Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Engineering Doctorate (EngD): Predicting Performance of Intensified Carbon Capture Inside Rotating Packed Beds using CFD Modelling


   Department of Mechanical Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof M Pourkashanian, Prof L Ma, Prof Derek Ingham  No more applications being accepted  Funded PhD Project (Students Worldwide)

About the Project

Carbon capture is considered the only technology able to decarbonise the hard-to-abate industries. Many of these industries utilise legacy sites with little space for large new unit operations required in conventional carbon capture. Rotating packed beds (RPB) look to solve this problem by intensifying carbon capture and reducing the footprint required by up to ten times, while also significantly decreasing the capital cost of these units. When combined with proprietary solvents, it is believed the cost of capture can be reduced to $30/tonne CO2 in some cases, helping to enable the rapid uptake of carbon capture and progression towards net zero.

RPB are a novel technology that utilise the principles of process intensification to enhance the performance of mass transfer processes between fluids. Given the application of RPB to the field of CO2 capture is relatively new, there is uncertainty regarding the impact of different process variables on the performance of the RPB that would otherwise require a significant amount of practical experimentation to investigate. Computational fluid dynamics can enable the process to be accurately modelled, allowing for quick and inexpensive prediction of performance under various conditions.

In this project a rotating packed bed absorber will be modelled in Ansys FLUENT, with validation of the model’s outputs through use of the 1 tonnes of CO2 per day (TPD) pilot-scale rotating packed bed absorber at the University of Sheffield’s Translational Energy Research Centre. Initial research will involve investigating the impact of operational conditions and physical properties of the solvent on capture performance. As the project continues, the scope will widen to include sensitivity analysis of design parameters and the impact of scaling the RPB absorber on the existing project outputs and learnings. Additionally, further rotating unit operations could also be investigated.

This project will utilise and develop your knowledge surrounding CFD modelling, mass and heat transfer, reaction kinetics and chemical equilibria. You will work closely with Carbon Clean, a global leader in the development of carbon capture technology and pioneers in the use of RPB for industrial decarbonisation. Your findings could directly impact the design and operation of commercial working carbon capture facilities, supporting the pathway to net zero.

We are seeking applicants to start in September 2022. Potential applicants should have, or are expecting to obtain in the near future, a first class or good 2.1 honours degree in engineering, mathematics, or science. The studentship is open to UK candidates, but exceptional and highly qualified international applicants are also welcome to apply.

The project will be part of the EPSRC-supported Centre for Doctoral Training in Resilient Decarbonised Fuel Energy Systems. The student who undertakes it will be one of a cohort of over 50 students in a broad range of disciplines across the Universities of Sheffield, Nottingham and Cardiff.

The research work will be based in the Energy Research Group within the Department of Mechanical Engineering and the Translational Energy Research Centre (TERC) at Sheffield which is a brand new, high profile, innovation focused national research facility. You will be working within an exciting and dynamic group with approximately over 60 researchers undertaking a broad area of energy research with approximately three years' extensive research time in industry, preparing for high-level careers in the energy sector.

Engineering (12) Mathematics (25)

Funding Notes

The studentship will cover full university fees and a tax-free, enhanced annual stipend of £20,352, including £16,062 (2022/2023) a year for four years and a stipend enhancement of £3,750 per annum.

Where will I study?