Postgrad LIVE! Study Fairs

Southampton | Bristol

Nottingham Trent University Featured PhD Programmes
University of Glasgow Featured PhD Programmes
University of Warwick Featured PhD Programmes
Anglia Ruskin University Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
The Centre for Advanced Fluid Engineering for Digital Manufacturing

Funded PhD Opportunities as part of The Centre for Advanced Fluid Engineering for Digital Manufacturing (CAFE4DM)

At CAFE4DM we aim to address the challenges in understanding, creating and scaling up manufacturing processes for formulated products in fast moving consumer goods (home/personal care and food products).

A major outcome of the CAFE4DM project will be a demonstrator of the Industry 4.0 concept which will enable smart factories to be realised in the process sector and thus allow the UK to remain at the forefront of manufacturing in this field.

The project brings together a multi-disciplinary team from The University of Manchester, the University of Cambridge, STFC and Unilever, who are a global leader in the research, process design and manufacture of formulated products. The project is also supported by Process Systems Enterprise Ltd.

The project combines world leading academic and applied research experience with real industrial relevance. You will work with expert supervisors within Unilever and University of Manchester as the team develops a new modelling approach and the associated materials, measurement and validation to predict the properties of new formulated products associated with fast moving consumer goods (home/personal care and food products). Please visit our website for further information.

We have fully funded (UK/EU student) PhD projects available across a range of subjects relevant for the project. We can offer you a dynamic and supportive environment in which you will carry out independent and original, multidisciplinary research, pushing the boundaries of digital manufacturing.

The Centre for Advanced Fluid Engineering for Digital Manufacturing

Our research themes include:

Modelling of Microscale Rheology

Computational methods which describe the time dependent changes in microstructures and the effect that this has on the flow properties of complex fluids solution will be examined. These predictive multiphysics tools will be validated using experimental data determined in other parts of the project to assess the mixture morphology during the manufacturing process.

Structure-property relationships

Computational and experimental approaches to enable a detailed understanding of the interactions involved between the components within complex fluid will be studied. X-ray and neutron scattering techniques coupled with 1D and 2D NMR spectroscopic methods will be applied to probe the interactions and structures within the liquid formulations and develop structure property relationships with measured rheological data, for example. This detailed molecular structure information will be used to develop semi-empirical correlative and group contribution models model to predict their physical properties.

Process Analytics

Research into the development of in-line measurement tools for product development and manufacturing processes for complex fluids will be undertaken. These methods will be used to design feedback controllers and more advanced model based control systems that utilise process analytical measurements in order to guide design of experiments through intelligent robotic systems. The analytical tools investigated will include electrical resistance and impedance tomography, particle imaging velocimetry, planar laser induced fluorescence and optical coherence tomography.

Innovation Management and Behavioural Change

Research into the barriers associated with behavioural change to introduce new digital tools into manufacturing processes is needed. Our research will specifically focus on the innovation management and behavioural change needed to create a holistic framework for the implementation of technology within the fast moving consumer goods industry.

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully


FindAPhD. Copyright 2005-2019
All rights reserved.