Coventry University Featured PhD Programmes
University of Kent Featured PhD Programmes
Bournemouth University Featured PhD Programmes

4-year PhD Studentship Localised high resolution forecasting for energy demand based on smart meter data

  • Full or part time
  • Application Deadline
    Thursday, April 30, 2020
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

The Energy Systems and AI Lab (ESAIL) are focused on applying AI to solve problems across the energy sector to accelerate decarbonisation.

Founded in 2017, Igloo Energy (https://igloo.energy/) is an energy supplier with the mission to make their customers’ homes smarter, more efficient and cost less to run while helping the world get a cleaner energy system. Igloo provides customers with a mix of technology and by analysing data on how they use energy in their home, Igloo aim to reduce energy usage for the customer.

The availability of smart meter energy data is a significant asset for utilities businesses that offers the potential of significantly improving business operations while overcoming the challenges caused by the electrification of heat and transport and the growth of distributed generation.

One core business operation that could be improved with better customer information is the forecasting of demand (and distributed supply) at high spatio-temporal resolution. Demand forecasts are central to a utilities business and influence decisions on the purchasing of electricity and hedging of future prices which are a cost to the business. Failure to hedge future prices correctly and exposure to highly volatile balancing market costs have been a contributory factor in the failure of a number of utilities.
Supervisors: Aidan O’Sullivan
Start Date: September 2020

Project description

This is a PhD in Energy and Artificial Intelligence. Using smart meter data provided by the partner utility company. This PhD will investigate, using smart meter data provided by the partner utility, how bottom-up forecasting models can be used to predict energy demand at a number of scales. These models will be trained on historical data from individual smart meters, and the forecasts will be aggregated at a local/regional level and compared with the accuracy of top down forecasts to assess what benefits exist and what level they occur.

Particular avenues of exploration could be:
- Spatial information allowing exploration of scenarios such as the impact of Locational Marginal Pricing (nodal pricing), a policy implemented in the United States and much discussed in the UK, on a utility based on its current portfolio of customers and the impact of the spatial distribution of its customers on profitability.
- the potential for balancing portfolios of customers, locally or within the suppliers base, and identifying locations of possible network constraints and substations likely to reach capacity with the uptake of electric vehicles.
- Design of an optimal trading agent for the hedging and purchasing of electricity given the portfolio of smart meter information is a likely final application of the research that would bring together a number of the individual strands of the project.

Methods

As a starting point, state-of-the-art ensembling methods will be tested as a benchmark before exploration of the potential for deep learning methods in particular Long-Short-Term-Memory Neural Networks to improve results. Reinforcement learning and agent-based models will also be explored throughout the course of the project.

Person Specification

The research will require candidates with a background in a quantitative field such as maths, physics, computer science or engineering and an interest in the energy sector and decarbonisation.
Experience in one or more of the following would be an advantage: statistics, machine learning, AI and programming/
Candidates should have a Master’s degree and/or a first or upper-second class Bachelor’s degree.
Applicants must also meet the minimum language requirements of UCL (https://www.ucl.ac.uk/prospective-students/graduate/learning-and-living-ucl/international-students/english-language-requirements)

Please submit a pre-application by email to the UCL ERBE Centre Manager () with Subject Reference: 4 year PhD Studentship Localized high resolution forecasting.

The application should include the following:
- A covering letter clearly stating which project you wish to apply for, your motivation, and your understanding of the EPSRC eligibility criteria ( https://epsrc.ukri.org/skills/students/guidance-on-epsrc-studentships/eligibility/)
- CV
- Names and addresses of two academic referees
- A copy of your degree certificate(s) and transcript(s) of degree(s),

Only shortlisted applicants will be invited for an interview.

Application deadline: Thursday, 30 April 2020 23:59 (UK time)

Following the interview, the successful candidate will be invited to make a formal application to the UCL Research Degree programme. For further details about the admission process, please contact:

For any further details regarding the project, contact Dr Aidan O’Sullivan:

Funding Notes

Stipend - enhanced tax-free stipend of approx. £18,000 yearly & UK course fees & budget for research, travel, and Centre activities.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2020
All rights reserved.