Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  A microfluidic toolkit for drug delivery particle discovery


   Institute of Chemical Biology

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Yuval Elani, Dr N Brooks  Applications accepted all year round  Funded PhD Project (UK Students Only)

About the Project

This project is sponsored by the Institute of Chemical Biology EPSRC Centre for Doctoral Training and AstraZeneca

Supervisors:

Abstract:

Automation and high throughput screens are used in the pharma industry to manufacture and test massive numbers of compounds in the therapeutic development process. Drugs are chosen to cover large areas of chemical diversity to broadly probe biological function without earlier assumptions. Although this has proven hugely successful in the discovery of active pharmaceutical ingredients (APIs), such concepts are currently not used to develop soft matter drug delivery vehicles (liposomes, LNPs etc) themselves. There is huge scope for innovation in terms of the architectures of the delivery particle themselves, driven by the lack of technologies to manufacture libraries of such structures.

In this project we will develop microfluidic platforms to create massive libraries of different lipid NP formulations, morphology, charge, sizes, amphiphile composition, and encapsulated genetic material type. Building on this, we will develop integrated lab-on-chip platforms to test their ability to deliver genetic material to cells via in vitro assays. In doing so, we aim to establish the infrastructure for a new frontier in high-throughput manufacture and screening of soft nanoparticle libraries. We use this as a basis for a high-throughput screening platform, where we will screen the nanoparticle itself (as opposed to the active ingredient). This offers a conceptual shift from existing approaches that rely on one-by-one rational design and manufacture of particle types. Together with our industrial collaborators (AstraZeneca) we will apply our technology to scientific priorities of the pharmaceutical sector. Once established, our platforms can be applied to *any* application where soft matter particle discovery is needed, including in drug/vaccine therapeutic delivery applications and in biosensing.

Recruitment will continue until the post is filled.

Eligibility

The entry requirement is a degree in the physical sciences with a minimum 2.1 or above (or equivalent).

Chemistry, physics, mathematics and engineering graduates who wish to learn how to apply their physical sciences skills to biological problems. Students from biological or medicinal backgrounds are usually not eligible. If in doubt, please contact us.

We are only able to accept candidates with both ‘Home’ fee status. Please see our Eligibility Criteria webpage for more detailed information.

About the ICB CDT

Successful applicants to this project will be part of 2023 entry cohort of the EPSRC CDT in Chemical Biology: Innovation for the Life Sciences. The aim of the ICB CDT, one of the longest standing CDTs in the UK, is to train students in the art of multidisciplinary Chemical Biology research, giving them the exciting opportunity to develop the next generation of molecular tools and technologies for making, measuring, modelling and manipulating molecular interactions in biological systems.

Applicants to this programme will enrol on a 1 year MRes in Chemical Biology and Bioentrepreneurship, followed by a 3 year PhD, building on the research project from the MRes. For further information, please see our studentship webpages.

Successful applicants, both Home and International, will be awarded a fully funded studentship. This includes:

  • Annual National Minimum Doctoral Stipend, currently £17,668 + £2000 London allowance for 2022/23
  • Annual Tuition fees at either the Home or Overseas fee rate for both the MRes and PhD years
  • A Research Training Support Grant for laboratory consumable costs of £3,500 per year
  • Funding to attend conferences
  • Transferable skills training

How to apply

To apply for this project, please submit an application on the Imperial College Gateway (please see our How to Apply page for more detailed guidance).


Biological Sciences (4) Chemistry (6) Engineering (12)
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

 About the Project