Norwich Research Park Featured PhD Programmes
Aberdeen University Featured PhD Programmes
University of Edinburgh Featured PhD Programmes

A new way of thinking about biofilm formation

   School of Chemical Engineering

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Dr T Overton, Dr F Fernandez-Trillo  No more applications being accepted  Competition Funded PhD Project (UK Students Only)

About the Project

Biofilms are a major mode of microbial life on earth, and impact our lives due to their profound effects in clinical and industrial settings. Bacteria often form biofilms as a response to stressful environmental conditions, and biofilms are frequently more resistant to biological, chemical, and physical stresses (eg antibiotics; acids and other chemicals; and fluid flow / cleaning;) than planktonic bacteria. Biofilms have been defined by Donlan and Costerton (2002) as “a microbially derived sessile community characterized by cells that are irreversibly attached to a substratum or interface or to each other, are embedded in a matrix of extracellular polymeric substances that they have produced, and exhibit an altered phenotype with respect to growth rate and gene transcription”. The traditional model of biofilm formation on a solid surface comprises five stages: initial (reversible) attachment; irreversible attachment; proliferation and microcolony formation; maturation; and dispersion. However, there is growing evidence that the traditional 5-step model for biofilm formation might be an oversimplification, and new models have been proposed. Cell aggregates often form in cultures in liquid media, which can settle to the bottom; could these settled aggregates form a biofilm? Are cell aggregates a biofilm, in that they make their own matrix? In addition, pellicle formation is encompassed by these new models. Pellicles are ‘floating’ biofilms that form at the air-liquid interface and are the major mode of biofilm formation in some species such as Bacillus subtilis; E. coli can also form pellicles under certain growth conditions. Pellicle formation has been postulated by a number of models, including extension from the wall of a growth vessel, and formation by floating ‘rafts’ of bacteria. The Overton lab’s previous work with biofilms has focused on use of E. coli biofilms as platforms for biocatalysis (Tsoligkas et al., 2011). This led on to work investigating the fundamentals of E. coli biofilm formation (Leech et al., 2020) and discovery of pellicles formed by E. coli K-12 strains under certain growth conditions. We have worked in collaboration with the Fernandez-Trillo lab on use of polymers for directing bacterial physiology and behaviour, including formation of clusters and biofilms. In this project we will put together ideas around formation of biofilms, pellicles and aggregates of cells, and investigate how each structure differs. Do aggregates and pellicles have similar structural properties to biofilms attached to surfaces? What environmental signals trigger the switch from single-celled planktonic growth to biofilm, aggregate or pellicle formation? Under what circumstances can cells change from an aggregate to a biofilm or a pellicle, and what are the regulatory and structural changes that occur under these circumstances?

The project will be guided by current research and focus on E. coli initially, although may diversify to other organisms such as Pseudomonas aeruginosa. Polymers will be used as a key tool for directing bacterial behaviour. We will use flow cytometry and microscopy techniques, as well as standard molecular microbiology approaches (eg mutants, reporter genes) and some physical science analytical methods (eg hydrophobicity, surface charge of bacteria).

How to apply

Applicants are encouraged to contact Dr. Tim Overton directly ([Email Address Removed]) to discuss the project before applying. Detailed instructions for applicants, academic requirements and eligibility criteria can be found in the University of Birmingham and University of Warwick websites:

Funding Notes

The Midlands Integrative Biosciences Training Partnership (MIBTP) is a BBSRC-funded doctoral training partnership between the universities of Aston, Birmingham, Harper Adams, Leicester and Warwick. Successful applicants will be funded by the BBSRC, including UK fees and stipend. International students are eligible to apply, but the BBSRC does not cover international fees. Please see application details and eligibility criteria at


Donlan RM, Costerton JW. (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. doi: 10.1128/cmr.15.2.167-193.2002.

Tsoligkas AN, Winn M, Bowen J, Overton TW, Simmons MJ, Goss RJ. (2011) Engineering biofilms for biocatalysis. Chembiochem. doi: 10.1002/cbic.201100200.

Leech J, Golub S, Allan W, Simmons MJH, Overton TW. (2020) Non-pathogenic Escherichia coli biofilms: effects of growth conditions and surface properties on structure and curli gene expression. Arch Microbiol. doi: 10.1007/s00203-020-01864-5.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.