Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  A novel manufacturing method for application of ultrathin sheet laminations for electric machines.


   Department of Mechanical Engineering

  , ,  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

The greater electrification of many industrial and commercial sectors is acknowledged as an important contributor to plans for reaching net-zero carbon by 2050. In this context, increasing the efficiency of electrical machines through a combination of lower loss materials, improved device design and more efficient and effective manufacturing routes will positively impact global energy requirements, reduce carbon emissions, and facilitate decarbonisation of the global economy.

The pace of developments in the electrification of transportation means that there are now many more machines entering service operating at higher speeds from power electronic switching converters than was the case with more traditional industrial drives. This in turn is driving a growing trend towards the adoption of thinner gauges of electrical steels (ES) in the stator cores of electrical machines in order to reduce core losses and hence enhance efficiency and/or power density (since power density is often limited by thermal and hence loss considerations). Ultra-thin sheets offer significant efficiency benefits over the more established sheet thicknesses of 0.2mm and, more commonly 0.35mm, which have tended to dominate the market for medium and high-performance machines in many sectors. In addition to the cost penalty of premium of rolling thinner sheets, the processing of thinner sheets into complete core-packs poses numerous challenges.

To overcome these drawbacks, this project, in collaboration with the EPSRC Future Electric Machines Manufacturing Hub, aims to develop a new disruptive technology is expected to deliver a route to the cost-effective manufacture of stator core with ultra-thin laminations and improved efficiency and significantly increased power/weight ratios for the next generation of electric motors. This proposal is timely in addressing this need as we have now reached the limit of how thin a metal sheet current technology can cut and handle.

Previous experience / requirements: Skills in mechanics of materials (design and data analysis in mechanical testing), Modelling and experience in use of Finite element analysis and its application, familiarity with electric machines

Contact: ,  

Keywords: Manufacturing, Sheet forming, Electric Machines, Blanking, Finite element modelling, Composites

Engineering (12)

Funding Notes

Self funded applicants only.

Register your interest for this project



Where will I study?

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.