Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Targeting DNA repair to overcome cancer therapy resistance


   Department of Oncology

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof Peter McHugh, Prof T Brown  No more applications being accepted

About the Project

THE PROJECT
DNA cross-linking drugs and radiotherapy (RT) are used to treat a range of tumours including many hard-to-treat cancers (e.g. pancreas, oesophageal, lung) for which survival rates remain low. DNA repair pathways counteract the cancer-killing effects of crosslinking drugs and RT, by removing the toxic DNA damage they produce. Consequently, resistance to these therapies remains a major problem, often limiting their effective use.

The XPF-ERCC1 nuclease is critical to a number of DNA repair pathways including DNA crosslink and double-strand break repair. Therefore, inhibition of XPF-ERCC1 will effectively stall the repair of the DNA damage induced by crosslinking drugs and RT, making it attractive drug target. In our previous studies we have explored how the activity of XPF-ERCC1 is controlled by accessory proteins such as replication protein A (RPA) and SLX4. SLX4 is known to act as a ‘scaffold’ protein recruiting XPF-ERCC1 to the sites of damage, and both RPA and SLX4 have dramatic effects on the activity of XPF-ERCC1. In this studentship, we would like to identify the molecular mechanism of the regulation of XPF-ERCC1 activity by RPA and SLX4. We will solve the structure of human XPF-ERCC1 in complex with SLX4 and RPA bound to the DNA substrates modelling damaged replication forks. We will use a number of complementary approaches to achieve this including cryo-electron microscopy, X-ray crystallography and SAXS. This detailed analysis of the structure of XPF-ERCC1 bound to its key regulatory partners will reveal structural elements that are essential for DNA substrate recognition and will identify the key residues mediating the interaction between XPF-ERCC1 and accessory proteins. Armed with this information we will use cell-based approaches to confirm the importance of interactions and repair complex architecture identified in vivo. The structural information will also be used to guide the design of small molecule inhibitors that can be used in combination with chemotherapeutic agents and radiation with the aim of increasing the potency of existing anti-cancer treatments.

THE TRAINING
Training in protein purification and analysis, structural biology (X-ray crystallography and cryo-Electron Microscopy), biochemistry, cell biology, genome editing and developing cellular models of cancer treatment.

PUBLICATIONS
Abdullah UB, McGouran JF, Brolih S, Ptchelkine D, El-Sagheer AH, Brown T, and McHugh PJ. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks. EMBO J, 2017, 14;36(14):2047-2060.

Wang AT, Sengerová B, Cattell E, Inagawa T, Hartley JM, Kiakos K, Burgess-Brown N, Enzlin JH, Schofield CJ, Gileadi O, Hartley JA, McHugh PJ. Human SNM1A and XPF-ERCC1 collaborate to initiate DNA interstrand cross-link repair. Genes and Development 2011; 25 (17):1859-70.

De Silva IU, McHugh PJ, Clingen PH, Hartley JA. Defining the roles of nucleotide excision repair and recombination in the repair of DNA interstrand cross-links in mammalian cells. Mol Cell Biol. 2000; 20(21): 7980-90

Funding Notes

All complete applications received by 12 noon (UK time) on Friday 10 January 2020 will automatically be considered for all relevant competitive University and funding opportunities, including the Clarendon Fund, Medical Research Council funding, and various College funds. Please refer to the Funding and Costs webpage (https://www.ox.ac.uk/admissions/graduate/courses/dphil-oncology) for this course for further details relating to funded scholarships and divisional funding opportunities.

Funded studentships are highly competitive and are awarded to the highest ranked applicant(s) based on the advertised entry requirements for each programme of study.

References

Whilst you must register three referees, the department may start the assessment of your application if two of the three references are submitted by the course deadline and your application is otherwise complete. Please note that you may still be required to ensure your third referee supplies a reference for consideration.

Academic references are strongly encouraged, though you may use up to one professional reference provided that it is relevant to the course

How good is research at University of Oxford in Clinical Medicine?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities