Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  A tale of two lagoons: Determining the drivers and trajectories of change for the Venice (Italy) and Razelm-Sinoe (Danube-Delta, Romania) lagoons through Earth observation and modelling


   Faculty of Natural Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof A N Tyler, Dr E Spyrakos, Dr P Hunter, Dr Claire Miller, Dr Georg Umgiesser, Dr Debora Bellafiore, Prof Adrian Stanica, Dr Francesca Depascalis, Prof Stefan Simis  Applications accepted all year round  Competition Funded PhD Project (Students Worldwide)

About the Project

As with all transitional environments, lagoons fulfil pivotal roles in global-scale biogeochemical cycles being a nexus between the terrestrial and marine environments. This combination of factors drive the productivity of these ecosystems that are biodiversity hotspots with high conservation value. As a result, lagoons provide numerous ecosystems services that have tended to result in a long history of human settlement. Lagoons have therefore been subject to multiple conflicting societal demands and environmental pressures, including industrial, agricultural and domestic pollutants, as well as hydrological and morphological modifications. These pressures have been further compounded by the pressures of climate change necessitating the need for further interventions including the operational barrage system (the MOSE) to defend Venice from extreme tidal flood events. 

Lagoons are therefore highly vulnerable to these natural and man-induced perturbations and may be characterised by having low threshold tipping points. However, our scientific understanding of these complex and dynamic environments is currently constrained by our inability to observe changes in ecosystem structure and functioning and their responses to environmental perturbation.  This is a serious concern, as lagoons are likely to be highly sensitive to future environmental changes such as nutrient pollution, global sea level rise, changes in precipitation, storminess and changing patterns of land use. There is a need to establish new approaches for the collection, integration and assimilation of data from disparate sources including in situ monitoring programmes, Earth observation (EO) and couple these with hydrodynamic models for improved our understanding and the confident implementation of conservation and management solutions.  This PhD will integrate these approaches to achieve a better understanding of the consequences of these perturbations of two contrasting lagoons in both time (decades, with one year simulations in each morphological configuration) and 3D space (from surface with EO products, and with depth through models, validate by in situ measurements).

To develop a better understanding and implement better management strategies of complex lagoon ecosystems, this PhD brings together state of the art Earth observation (EO) capability building on ESA’s sentinel programme to validate cutting edge hydrodynamic modelling.  Together these will allow lagoon systems to be modelled to assess impacts on both past, present and future management scenarios to be evaluated in 3D space and time.  

This PhD will focus on two contrasting lagoon systems: (i) the Razelm-Sinoe connected to the Danube and impacted in the 1970s by being artificially isolated from the Black Sea by an engineered sand barrier to transform the lagoon into a freshwater system. At the same time the Razelm lagoon became a highly eutrophic environment. The lagoon now forms an important component of the Danube Delta Biosphere reserve; and (ii) the Venice lagoon, (UNESCO heritage site of inestimable value) with a deeply entrenched cultural history lasting for more than 1000 years, and probably the most well-known lagoon of the Mediterranean, with the largest wetland. In contrast to the Razelm, it is a heavily engineered lagoon with strong historical anthropogenic influence and now has an operational barrage system (the MOSE) to defend Venice from extreme tidal flood events 

The PhD student will be registered at Stirling and will spend time with our Partner Institutions, including up to 6 months each year in Venice, Italy and will work with partners across a number of well-funded Horizon 2020 projects, including DANUBIUS-RI, MONOCLE and CERTO and ESA Lakes CCI.  

Further details for this exiting PhD can be found at IAPETUS DTP web page:

https://www.iapetus2.ac.uk/studentships/a-tale-of-two-lagoons-determining-the-drivers-and-trajectories-of-change-for-the-venice-italy-and-razelm-sinoe-danube-delta-romania-lagoons-through-earth-observation-and-modelling/


Biological Sciences (4) Environmental Sciences (13) Geography (17)

Funding Notes

This is a competitively funded PhD studentship that forms part of the NERC Doctoral Training Partnership IAPETUS (http://www.iapetus.ac.uk). We welcome applications from all interested individuals, but a first class degree and/or MSc with distinction are recommend.
For the successful candidate, the studentship will cover tuition fees and provide a stipend (estimated £14,553 for Session 2017-18). IAPETUS is only able to consider applications from Home/EU candidates (but see NERC funding rules for exceptions regarding EU citizens).

References

The application deadline is Friday 8th January 2021 at 5pm. By this time applicants must have completed two application steps: an application through the Stirling University online admissions system and an application through the IAPETUS DTP application system.
• Online Stirling University applications should be submitted here:
https://www.stir.ac.uk/research/research-degrees/how-to-apply-for-our-research-degrees/.
• The online IAPETUS application form and further details are here:
https://www.iapetus2.ac.uk/how-to-apply/. However, serious applicants should contact the lead supervisor by email well before the deadline to discuss their application.
Initial shortlisting will take place immediately after the 8th January deadline. Those candidates who are successful in shortlisting will be required to attend an online IAPETUS interview on Tuesday 16th February 2021.
UKRI eligibility rules enable a small proportion of IAPETUS PhD studentships to be awarded to non-UK applicants from overseas; applicants from overseas should contact the lead supervisor to discuss this.

Where will I study?