Looking to list your PhD opportunities? Log in here.
About the Project
Smart IoT (Internet Of Things) based Applications, such as smart city/building/home and smart factory, are characterized as sensor-driven technology, which has the tendency of producing huge volume of data with increasing velocity. The resulting data produced by these applications are mostly used to support organisation, planning, interpretation and decision-making activities such as context modelling, system adaptation and system evolution. However, these data come with a number of quality issues that collectively results in uncertainties and inconsistencies.
In this project, we aim to innovatively integrate semantics-based data modelling and analysis with continuous deep learning to provide a novel effective solution to the above problem.
The semantic data model will provide a machine-understandable foundation for the IoT data and its analysis, and will be able to produce near real-time solution for the detection and correction of IoT data uncertainties. However, this semantic model may be static and imprecise to cope with the highly dynamic nature of IoT systems and the data they have been generating. Therefore, we propose to use deep learning to support the continuous evolution of the semantic model and its data analysis algorithms.
Academic qualifications
A first degree (at least a 2.1) ideally in Computer Science with a good fundamental knowledge of software engineering or data science, or artificial intelligence or Internet Of Things.
English language requirement
IELTS score must be at least 6.5 (with not less than 6.0 in each of the four components). Other, equivalent qualifications will be accepted. Full details of the University’s policy are available online.
Essential attributes:
• Experience of fundamental software design and development
• Competent in design of Internet Of Things applications
• Knowledge of data models and analysis
• Good written and oral communication skills
• Strong motivation, with evidence of independent research skills relevant to the project
• Good time management
Desirable attributes:
Some knowledge of machine learning would be beneficial.
Edinburgh Napier University is committed to promoting equality and diversity in our staff and student community https://www.napier.ac.uk/about-us/university-governance/equality-and-diversity-information.
Funding Notes
References
Qi Liu, Bilal, M., Xiaodong Liu, et. al. "Deep Vision in Analysis and Recognition of Radar Data: Achievements, Advancements and Challenges. IEEE Systems, Man, and Cybernetics Magazine, (in Press), 2022.
Claus Pahl, Frank Fowley, Pooyan Jamshidi, Daren Fang and Xiaodong Liu, “A classification and comparison framework for cloud service brokerage architectures”, IEEE Transactions on Cloud Computing, accepted, 6(2), DOI: 10.1109/TCC.2016.2537333, 2018.
Email Now
Why not add a message here
The information you submit to Edinburgh Napier University will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Edinburgh, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Enhanced Deep Learning and Semantic-based Predictive Analytics for Reactive IoT Streaming Data and Applications
Edinburgh Napier University
Deep-learning for semantic-based information extraction from natural language
Anglia Ruskin University ARU
Machine learning based approach for numerical analysis of nonlinear dynamics of unmanned systems PhD or MSc by Research
Cranfield University