Birkbeck, University of London Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
The Hong Kong Polytechnic University Featured PhD Programmes

Academic Endocrine Unit: investigating the molecular basis of endocrine and metabolic disorders that principally affect calcium and phosphate homeostasis.

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  • Full or part time
    Prof R Thakker
    Dr K Lines
    Dr Mark Stevenson
    Dr K Kooblall
  • Application Deadline
    No more applications being accepted
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

Other Potential Supervisors: Dr Asha Bayliss

The Academic Endocrine Unit investigates the molecular basis of endocrine and metabolic disorders that principally affect calcium and phosphate homeostasis.

These disorders may be due to endocrine tumours, kidney defects, or abnormalities of bone metabolism. Thus, the identification of the underlying mechanisms is expected to lead to advances in our understanding of a number of clinical disorders that result in endocrine tumour development, kidney stones and different types of bone disease including rickets and osteoporosis, and inform on novel treatments. Our research can be broadly divided into two main categories, 1) endocrine tumours, and 2) rare kidney and bone disorders.

Endocrine tumours, particularly in the parathyroid, pituitary and pancreas, may develop spontaneously, or in families, and individually or in association with each other, for example, in multiple endocrine neoplasia type 1 (MEN1). MEN1 is an inherited syndrome, caused by loss-of-function mutations of the MEN1 gene (encoding the tumour suppressor protein menin). Patients may develop parathyroid, pituitary and/or pancreatic tumours that over-secrete hormones. MEN1 mutations are also found in sporadic tumours. We aim to better understand the function of menin, and its putative role in epigenetic regulation. Endocrine tumours are usually removed by surgery. However, this is not always possible, and medical therapies are sub-optimal. Improved treatments are therefore needed, and we are investigating epigenetic modifying drugs, which we have shown to reduce endocrine tumour cell proliferation.

The group are also researching rare monogenic kidney and skeletal disorders that include Dent’s disease, Familial juvenile hyperuricaemic nephropathy (FJHN), and Marshall-Smith Syndrome (MSS). Dent’s disease, is associated with rickets, kidney stones and renal failure, and is due to mutations in CLC-5, a chloride-proton antiporter. CLC-5 mutations disrupt endocytosis within kidney tubules resulting in reduced protein reabsorption and we are using cellular models to investigate these processes mechanistically. FJHN is associated with renal fibrosis and is due to mutations in uromodulin. We are studying how uromodulin mutations cause protein misfolding and how this leads to renal fibrosis. MSS, is characterised by abnormal bone formation, and mental and motor retardation, and is caused by mutations in the NFIX gene. We aim to determine the effect of MSS-associated mutations on NFIX functions.

We therefore aim to build on the current work of the group targeting epigenetics to develop novel therapies for neuroendocrine tumours, and to elucidate the function of NFIX to better understand MSS pathogenesis and identify novel therapies. For neuroendocrine tumour studies the ability of compounds that inhibit the activity of histone modifying proteins will be assessed in reducing cell proliferation in vitro, and reduce NET growth in vivo, both alone and in combination with drugs currently used in the clinic. The mechanisms by which these compounds act will also be investigated, focusing predominantly on the interaction of menin and epigenetic modifications, to gain greater insight into the proteins involved in NET development and growth. For MSS studies our aim is to generate in vitro assays and in vivo mouse models expressing mutant NFIX that more closely resembles the mutations and phenotypes observed in MSS patients. These models will then be used to study the role of NFIX in the pathogenesis of MSS and to identify potential treatments for MSS.

All projects would be based at the Oxford Centre for Diabetes, Endocrinology and Metabolism and would provide training in a wide range of basic molecular biology techniques including Western Blot, PCR, DNA sequencing and immunohistochemistry; cellular biology techniques including cell culture, cell transfections, site directed mutagenesis, proliferation assays, apoptosis assays, flow cytometry analysis and microscopy; as well as the use of in vivo mouse models. Our group also has established international collaborators in drug development and bone morphology.

As well as the specific training detailed above, students will have access to high-quality training in scientific and generic skills, as well as access to a wide-range of seminars and training opportunities through the many research institutes and centres based in Oxford.

The Department has a successful mentoring scheme, open to graduate students, which provides an additional possible channel for personal and professional development outside the regular supervisory framework. We hold an Athena SWAN Silver Award in recognition of our efforts to build a happy and rewarding environment where all staff and students are supported to achieve their full potential.

Funding Notes

Our main deadline for applications for funded places has now passed. Supervisors may still be able to consider applications from students who have alternative means of funding (for example, charitable funding, clinical fellows or applicants with funding from a foreign government or equivalent). Prospective applicants are strongly advised to contact their prospective supervisor in advance of making an application.

Please note that any applications received after the main funding deadline will not be assessed until all applications that were received by the deadline have been processed. This may affect supervisor availability.


Lines KE, Stevenson M, Filippakopoulos P, Muller S, Lockstone HE, Wright B, Grozinsky-Glasberg S, Grossman AB, Knapp S, Buck D, Bountra C & Thakker RV. 2017 Epigenetic pathway inhibitors represent potential drugs for treating pancreatic and bronchial neuroendocrine tumours. Oncogenesis 6(5):e332
Harding B, Lemos MC, Reed AA, Walls GV, Jeyabalan J, Bowl MR, Tateossian H, Sullivan N, Hough T, Fraser WD, et al. 2009 Multiple endocrine neoplasia type 1 knockout mice develop parathyroid, pancreatic, pituitary and adrenal tumours with hypercalcaemia, hypophosphataemia and hypercorticosteronaemia. Endocr Relat Cancer 16 1313-1327.
Walls GV, Stevenson M, Soukup BS, Lines KE, Grossman AB, Schmid HA & Thakker RV 2016 Pasireotide Therapy of Multiple Endocrine Neoplasia Type 1-Associated Neuroendocrine Tumors in Female Mice Deleted for an Men1 Allele Improves Survival and Reduces Tumor Progression. Endocrinology 157 1789-1798.
Malan V, Rajan D, Thomas S, Shaw AC, Picard HLD, Layet V, Till M, van Haeringen A, Mortier G, Nampoothiri S, et al. 2010 Distinct Effects of Allelic NFIX Mutations on Nonsense-Mediated mRNA Decay Engender Either a Sotos-like or a Marshall-Smith Syndrome. American Journal of Human Genetics 87 189-198.
Campbell CE, Piper M, Plachez C, Yeh Y-T, Baizer JS, Osinski JM, Litwack ED, Richards LJ & Gronostajski RM 2008 The transcription factor Nfix is essential for normal brain development. Bmc Developmental Biology 8.
Kooblall K, Stevenson M, Piret S, Potter P, Cox R, Brown S, Hennekam, R, and Thakker, R (2015). Exploring the N-ethyl-N-nitrosourea (ENU) mutagenesis DNA archive for mutations in NFIX to derive mouse models for Marshall-Smith syndrome (MSS). Endocrine Abstracts, 34:P2.

How good is research at University of Oxford in Clinical Medicine?

FTE Category A staff submitted: 238.51

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

FindAPhD. Copyright 2005-2019
All rights reserved.