Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
Dating back over 150 years, Beckers is a true pioneer in providing unique, high-quality solutions that answer coating needs across many sectors. Currently Beckers is proud to be the global leader in supply of coil coatings from 24 locations in 18 countries. Currently the majority of coil coatings are applied to continuous wide metal strip and then thermally treated so as to induce gelation or crosslinking. Work with Surrey has developed many aspects of the current understanding about how this occurs at the molecular scale (eg: https://doi.org/10.1016/j.porgcoat.2022.107065, doi.org/10.1021/acs.analchem.7b04877, doi.org/10.1002/sia.1985). Currently this heating is carried out using gas powered ovens which impart a high carbon footprint to the finished article. As part of the ongoing commitment to increasing the sustainability of coil coatings new methods of crosslinking that have significantly lower carbon footprints are being explored. One such method is to use UV or electron beam radiation (radcure) to initiate free radical polymerisation. As these new technologies are being introduced into the coil coating market, there is a requirement to understand how these radcure coatings adhere to each other, conventional coil coatings and metallic coil substrates (usually zinc coated steel or aluminium).
The specific focus of the project will be on the inter-coat adhesion between different coating systems by comparing dual-cure and fully radcure systems to standard thermally cured coil coating. X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and Auger electron spectroscopy (AES) will be used to characterise the interface of different cured coating systems and establish the mechanism of adhesion for the different regimes. Leading to an understanding of how the different chemistries used in both radcure and thermal curing affect the inter-coat interface, and consequently what effect this has on adhesion. This has the potential to bring about new formulations with improved performance.
Supervisors: Professor John F Watts FREng, Dr Marie-Laure Abel
Entry requirements
Open to UK students starting in October 2023.
You will need to meet the minimum entry requirements for our PhD programme.
Candidates must meet Surrey graduate entry requirements which include holding at least an upper second-class degree or equivalent qualifications in a relevant subject area such as physics, chemistry, materials science or engineering. A Master’s degree in a relevant discipline and additional research experience would be an advantage .
How to apply
Applications should be submitted via the Engineering Materials PhD programme page. In place of a research proposal you should upload a document stating the title of the project that you wish to apply for and the name of the relevant supervisor.
Funding Notes
How good is research at University of Surrey in Engineering?
Research output data provided by the Research Excellence Framework (REF)
Click here to see the results for all UK universities
Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Guildford, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Proteomic analyses of adhesion signalling in cancer
The University of Manchester
Generation of THz radiation beams and its applications
Royal Holloway, University of London
Material degradation study of heat-exchanger materials and coatings for renewable energy PhD
Cranfield University