Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Advanced mechanical characterisation of two phase CO2 cooling pipe connections for the CMS tracker upgrade


   Department of Mechanical Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Alexander Lunt  No more applications being accepted  Competition Funded PhD Project (European/UK Students Only)

About the Project

CERN is the world’s largest high energy particle physics laboratory, which is based in Geneva Switzerland. In order to probe the fundamental behaviour of the universe, CERN’s engineers are required to achieve some of the world most extreme technical requirements and to produce vast accelerator systems such as the Large Hadron Collider (LHC). One of the main experiments within the LHC complex is the Compact Muon Solenoid (CMS) – a 14,000 tonne detector capable of resolving the one billion proton-proton interactions which are produced each second in its core.

The University of Bath and CMS have recently signed an affiliation agreement in order to make use of Bath’s state-of-the-art facilities and internationally renowned research team to tackle some of the extreme technical challenges at CERN. In this regard, Bath is initiating a PhD project focused on the £76 million CMS tracker upgrade, which is due to be installed in 2024. The tracker is the part of the detector closest to the collision, and uses over 6,000 connections per square centimetre to provide 75 million read-out measurements at a resolution of 10 µm.

The proximity of the detector to the collisions means that it receives the highest intensity radiation, and therefore effective cooling is required. Two-phase CO2 cooling will be used in the next generation of the tracker, which will be operated at 163 bar and -35ºC. The cooling channels need to be small (1-2 mm diameter) and lightweight (0.1-0.15 mm wall thickness) to minimise radiation shadowing, as well as highly reliable to allow the system to be operated for long periods without maintenance.

The extreme conditions present within the tracker has meant that custom detachable metallic miniature fittings and permanent soldered/brazed/welded connections are necessary. The successful applicant will be involved in the mechanical characterisation of these joints, in order to quantify performance and reliability, and thereby optimise performance. This will involve a combination of simulation and experimental work to perform strength/creep/pressure testing at low temperatures, as well as metallurgical assessment and corrosion studies.

Suitable candidates should have an interest in mechanics/microscopy based methods and a preference for experimental characterisation. Some prior modelling or simulation experience would also be beneficial. They will receive in-depth training on micromechanical mechanical testing as well as more conventional macroscale methods. These skills will be used to design novel test rigs and implement an experimental testing regime, which will provide feedback on the design and manufacture of connections, in order to validate their use. The candidate will be encouraged to attend national/international scientific conferences and schools, and to travel internationally for collaborative experimentation. As a result, the applicant will emerge as a highly qualified expert with a balanced scientific skill set and good industrial connections.

The successful applicant will ideally have graduated (or be due to graduate) with an undergraduate Masters first class degree or MSc distinction (or overseas equivalent). English language requirements must be met at the deadline for applications

For informal inquiries contact Dr Alexander Lunt ([Email Address Removed])

Formal applications should be made via the University of Bath’s online application form for a PhD in Mechanical Engineering. Please ensure that you state the full project title and lead supervisor name on the application form.

https://samis.bath.ac.uk/urd/sits.urd/run/siw_ipp_lgn.login?process=siw_ipp_app&code1=RDUME-FP01&code2=0013

More information about applying for a PhD at Bath may be found here:

http://www.bath.ac.uk/guides/how-to-apply-for-doctoral-study/

Expected start date: 30th September 2019


Funding Notes

This project is eligible for inclusion in a funding round scheduled for 1st May 2019. A full application must have been submitted before inclusion in the funding round.

Funding will cover Home/EU tuition fees, a maintenance stipend (£15,009 pa (2019/20 rate)) and a training support fee of £1,000 per annum for up to 3.5 years. Early application is strongly recommended.

Where will I study?