University of Leeds Featured PhD Programmes
University of Glasgow Featured PhD Programmes
John Innes Centre Featured PhD Programmes
University of Liverpool Featured PhD Programmes
University College London Featured PhD Programmes

Advanced mechanical characterisation of two phase CO2 cooling pipe connections for the CMS tracker upgrade

  • Full or part time
  • Application Deadline
    Tuesday, April 30, 2019
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

CERN is the world’s largest high energy particle physics laboratory, which is based in Geneva Switzerland. In order to probe the fundamental behaviour of the universe, CERN’s engineers are required to achieve some of the world most extreme technical requirements and to produce vast accelerator systems such as the Large Hadron Collider (LHC). One of the main experiments within the LHC complex is the Compact Muon Solenoid (CMS) – a 14,000 tonne detector capable of resolving the one billion proton-proton interactions which are produced each second in its core.

The University of Bath and CMS have recently signed an affiliation agreement in order to make use of Bath’s state-of-the-art facilities and internationally renowned research team to tackle some of the extreme technical challenges at CERN. In this regard, Bath is initiating a PhD project focused on the £76 million CMS tracker upgrade, which is due to be installed in 2024. The tracker is the part of the detector closest to the collision, and uses over 6,000 connections per square centimetre to provide 75 million read-out measurements at a resolution of 10 µm.

The proximity of the detector to the collisions means that it receives the highest intensity radiation, and therefore effective cooling is required. Two-phase CO2 cooling will be used in the next generation of the tracker, which will be operated at 163 bar and -35ºC. The cooling channels need to be small (1-2 mm diameter) and lightweight (0.1-0.15 mm wall thickness) to minimise radiation shadowing, as well as highly reliable to allow the system to be operated for long periods without maintenance.

The extreme conditions present within the tracker has meant that custom detachable metallic miniature fittings and permanent soldered/brazed/welded connections are necessary. The successful applicant will be involved in the mechanical characterisation of these joints, in order to quantify performance and reliability, and thereby optimise performance. This will involve a combination of simulation and experimental work to perform strength/creep/pressure testing at low temperatures, as well as metallurgical assessment and corrosion studies.

Suitable candidates should have an interest in mechanics/microscopy based methods and a preference for experimental characterisation. Some prior modelling or simulation experience would also be beneficial. They will receive in-depth training on micromechanical mechanical testing as well as more conventional macroscale methods. These skills will be used to design novel test rigs and implement an experimental testing regime, which will provide feedback on the design and manufacture of connections, in order to validate their use. The candidate will be encouraged to attend national/international scientific conferences and schools, and to travel internationally for collaborative experimentation. As a result, the applicant will emerge as a highly qualified expert with a balanced scientific skill set and good industrial connections.

The successful applicant will ideally have graduated (or be due to graduate) with an undergraduate Masters first class degree or MSc distinction (or overseas equivalent). English language requirements must be met at the deadline for applications

For informal inquiries contact Dr Alexander Lunt ()

Formal applications should be made via the University of Bath’s online application form for a PhD in Mechanical Engineering. Please ensure that you state the full project title and lead supervisor name on the application form.

https://samis.bath.ac.uk/urd/sits.urd/run/siw_ipp_lgn.login?process=siw_ipp_app&code1=RDUME-FP01&code2=0013

More information about applying for a PhD at Bath may be found here:

http://www.bath.ac.uk/guides/how-to-apply-for-doctoral-study/

Expected start date: 30th September 2019

Funding Notes

This project is eligible for inclusion in a funding round scheduled for 1st May 2019. A full application must have been submitted before inclusion in the funding round.

Funding will cover Home/EU tuition fees, a maintenance stipend (£15,009 pa (2019/20 rate)) and a training support fee of £1,000 per annum for up to 3.5 years. Early application is strongly recommended.

How good is research at University of Bath in Aeronautical, Mechanical, Chemical and Manufacturing Engineering?

FTE Category A staff submitted: 61.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.