Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Advancing the UKs experimental capability to study radiation effects on dynamic systems relevant to the recycling of spent nuclear fuel


   Department of Chemistry

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr A Baidak, Dr C Sharrad  No more applications being accepted  Funded PhD Project (UK Students Only)

About the Project

If you have an ambition to bring a Net Zero economy of the future closer, if you are curious about the effects of radiation on reprocessing of spent nuclear fuel and you want to be a part of the UK’s nuclear renaissance, then this could be the project for you.

This PhD project will investigate the radiation stability of advanced separation processes of spent nuclear fuel under industrially relevant conditions. Fundamental knowledge on the effect of radiation on separations processes is necessary in order to underpin the performance and viability of processes at an industrial reprocessing plant scale. Recent studies show that mixed biphasic systems show differences in the radiation stability compared with irradiation of the separate phases or static mixtures. Hence, experimental studies under industrially relevant conditions are highly needed.

The first part of this PhD project will involve the development of a modular irradiation test loop that can be used for both gamma rays and helium ion irradiations of mixed phase systems. This loop will fit both inside common irradiator types and have a window suitable for use on beamline end stations. The project will begin with designing, building and testing a bespoke new UK capability with suitable, versatile online sampling and analytical capabilities. The system will contain all the normal facets of a solvent extraction system; settling/separation tanks, temperature control, mixing regions and a flow loop.

In the second part, the project will move on to an experimental programme of irradiating and testing solvent extraction systems designed and developed both in the UK and internationally, providing data on the radiation tolerance, changes to the physicochemical properties and use within the process.

You’ll be based at the Dalton Cumbrian Facility in West Cumbria which offers unparalleled access to a diverse and experienced industrial expertise base, in particular to the National Nuclear Laboratory (industrial sponsor of this project).

Academic background of candidates 

Applicants are expected to hold, or about to obtain, a minimum upper second class Masters degree (or equivalent) in Chemical Engineering/Mechanical Engineering or Natural Sciences.

Contact for further Information

For project specific enquiries: Dr. Aliaksandr Baidak, [Email Address Removed]

Chemistry (6)

Funding Notes

This is a 4 year EPSRC iCASE studentship with National Nuclear Laboratory, covering tuition fees and stipend. Open to UK applicants only.
We expect the programme to commence in September 2021.

How good is research at The University of Manchester in Chemistry?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities