FindAPhD Weekly PhD Newsletter | JOIN NOW FindAPhD Weekly PhD Newsletter | JOIN NOW

Antimatter Chemistry: computational studies of matter-antimatter interactions.

   Department of Chemistry

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Dr M Law, Dr W T A Harrison  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Recently interest in antimatter research has increased as facilities such as CERN have succeeded in trapping antimatter atoms for long periods to study their properties [1]. Theoretical treatment of antimatter collisions [2] is needed in order to understand how it is destroyed by interacting with normal matter and thus to allow better trapping and storage techniques to be developed. There is also a growing interest in chemical reactions involving antimatter including the formation of the relatively long-lived antiprotonic helium system [3].

This project will investigate interactions between antimatter and ordinary matter. The work will include development of high-performance computer software and calculation of potential energies of interaction for a number of key systems in antimatter research including H2 + antihydrogen atom. These potential energy surfaces (PESs) will then be used to calculate rovibrational bound states and reactive and non-reactive scattering properties. Specifically, the bound state energies and wavefunctions for these systems allow prediction and understanding of spectroscopic properties, for example energy levels and lifetimes of states. Reactive scattering results, for which current literature is sparse, give the rates of processes such as

H2 + antihydrogen atom → Pn + Ps + H

which destroy antimatter by breaking up antiatoms and eventual annihilation of the proton-antiproton and electron-positron pairs in Pn and Ps respectively.

H2 + antihydrogen atom is a high priority system for the work at CERN along with charged variants such as H2+ + antiproton. The prototype molecule-antimolecule system H2 + antihydrogen molecule will also be tackled using techniques developed for simpler systems.

The project will make use of state-of-the-art quantum chemistry techniques to calculate reaction rates as well as highly excited vibration-rotation energy levels. Computer programs developed for this project may also be made use of by future research projects on matter-antimatter interactions involving more complex systems such as larger molecules.

Selection will be made on the basis of academic merit. The successful candidate should have, or expect to obtain, a UK Honours degree at 2.1 or above (or equivalent) in Chemistry or Physics or Chemical Physics, including experience of: atomic structure and chemical bonding and their description by quantum mechanics; basic principles of the quantum mechanical treatments of molecular electronic, vibrational and rotational motions along with:

Proficiency in basic calculus and algebra: differential and integral calculus of a single variable; complex numbers and the theory of polynomial equations, vector algebra in two and three dimensions, systems of linear equations and their solution, matrices and determinants.

Formal applications can be completed online:

• Apply for Degree of Doctor of Philosophy in Chemistry

• State name of the lead supervisor as the Name of Proposed Supervisor

• State ‘Self-funded’ as Intended Source of Funding

• State the exact project title on the application form

When applying please ensure all required documents are attached:

• All degree certificates and transcripts (Undergraduate AND Postgraduate MSc-officially translated into English where necessary)

• Detailed CV, Personal Statement/Motivation Letter and Intended source of funding

Informal inquiries can be made to Dr M Law ([Email Address Removed]) with a copy of your curriculum vitae and cover letter. All general enquiries should be directed to the Postgraduate Research School ([Email Address Removed])

Funding Notes

This PhD project has no funding attached and is therefore available to students (UK/International) who are able to seek their own funding or sponsorship. Supervisors will not be able to respond to requests to source funding. Details of the cost of study can be found by visiting


[1] “Laser cooling of antihydrogen atoms”, C. J. Baker et al., Nature 592, 35 (2021).
[2] “Hydrogen molecule-antihydrogen atom potential energy surface and scattering calculations”, B. P. Mant, M. M. Law
and K. Strasburger, Journal of Physics B 52, 185201 (2019).
[3] “Physics at CERN’s Antiproton Decelerator”, M. Hori and J. Walz, Progress in Particle and Nuclear Physics 72, 206
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

PhD saved successfully
View saved PhDs