Looking to list your PhD opportunities? Log in here.
About the Project
In recent years, plasma-catalysis has emerged as a promising technology to improve the performance of existing catalytic processes. The use of non-thermal plasmas in particular has proven effective in enabling catalysts to operate at low temperatures for a range of reactions [1-3]. In non-thermal plasmas, gas temperature can be as low as environmental, however highly energetic electrons colliding with molecules can produce a variety of species such as free radicals, excited states, ions, and other molecules that can participate in subsequent reactions. As such, there are species in the plasma, available to react on catalyst surfaces, which would typically be observed only at equilibrium systems of much higher temperature [4]. In certain cases, even synergistic effects have been experimentally demonstrated, where the performance achieved with plasma-catalysis was higher than the sum of plasma-alone and catalysis-alone [1,5].
Focus of the research programme will be on the plasma-catalytic conversion of methane towards higher hydrocarbons via non-oxidative coupling at low temperatures [6]. A combined experimental and computational approach will be followed, with specific research objectives further defined based on the skills, experience and interests of the candidate. The experimental work will utilise a dielectric barrier discharge reactor setup and aim at elucidating reaction pathways and identifying most promising catalytic materials for the reaction. Optical Emission Spectrometry will be used to detect plasma phase reactive intermediates. The modelling work will benefit from an already developed elaborate plasma-chemical kinetic model for methane conversion and will focus on extending the latter to account for catalytic effects. Microkinetic modelling will specifically be utilised to allow the systematic consideration of all elementary reaction processes taking place in the plasma phase and on the catalyst surface and the explicit description of the interactions between them.
The studentship forms part of wider research in our School in the field of plasma-catalysis and will greatly benefit from and contribute to these efforts. The excellent research facilities and world-class expertise will provide a very attractive opportunity for a highly motivated PhD student looking to progress a career in the exciting field of chemical reaction engineering at the interface of plasma science.
Selection will be made on the basis of academic merit. The successful candidate should have, or expect to obtain, a UK Honours degree at 2.1 or above (or equivalent) in Chemical Engineering or related discipline
Knowledge of:
· Knowledge in reaction kinetics analysis and/or kinetic and reactor modelling.
· Experience in the operation of experimental apparatus and/or in the preparation and characterization of catalysts.
· Experience in programming using e.g. FORTRAN or MATLAB.
· Familiarity with methane conversion processes.
APPLICATION PROCEDURE:
Formal applications can be completed online: https://www.abdn.ac.uk/pgap/login.php
• Apply for Degree of Doctor of Philosophy in Engineering
• State name of the lead supervisor as the Name of Proposed Supervisor
• State ‘Self-funded’ as Intended Source of Funding
• State the exact project title on the application form
When applying please ensure all required documents are attached:
• All degree certificates and transcripts (Undergraduate AND Postgraduate MSc-officially translated into English where necessary)
• Detailed CV, Personal Statement/Motivation Letter and Intended source of funding
Informal inquiries can be made to Dr P Kechagiopoulos (p.kechagiopoulos@abdn.ac.uk) with a copy of your curriculum vitae and cover letter. All general enquiries should be directed to the Postgraduate Research School (pgrs-admissions@abdn.ac.uk)
Funding Notes
References
[1] H.L. Chen, H.M. Lee, et al., Appl. Catal. B Environ. 85 (2008) 1–9.
[2] C.E. Stere, W. Adress, et al., ACS Catal. 4 (2014) 666–673.
[3] H.L. Chen, H.M. Lee, et al., Environ. Sci. Technol. 43 (2009) 2216–2227.
[4] J.C. Whitehead, J. Phys. D. Appl. Phys. 49 (2016) 243001.
[5] T. Nozaki et al., Catal. Today 211 (2013) 29–38.
[6] P.-A. Maitre, M.S. Bieniek, P.N. Kechagiopoulos, React. Chem. Eng. 5 (2020) 814–837.
Email Now
Why not add a message here
The information you submit to Aberdeen University will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Aberdeen, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
PhD in Chemistry: Microwave assisted heterogeneous catalysis
Cardiff University
Plasma-assisted technologies for clean combustion
Kingston University
Imaging and in situ spectroscopy for heterogeneous catalysis
University College London