University College London Featured PhD Programmes
University of Bristol Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Oxford Featured PhD Programmes
University College London Featured PhD Programmes

Approximate Bayesian Computation (ABC) for calibrating and evaluating Individual Based Models of fisheries

  • Full or part time
  • Application Deadline
    Friday, January 10, 2020
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Project Highlights:

• Spatially-explicit landscapes IBMs can show how populations change over time in response to management actions
• Development of new Monte Carlo techniques for calibrating IBMs using state-of-the-art statistical techniques
• Use of machine learning methods for reducing computational cost of Monte Carlo approaches

This project is supervised by Dr Richard Everitt, Associate Professor in Department of Statistics.

Individual-based models (IBMs) are used to simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals.
There is urgent need to improve methods of calibrating such models: existing methods are too slow, and not always accurate. This project aims to improve the best existing method: Approximate Bayesian Computation, ABC. ABC is currently being used at Reading for statistical inference in a diverse range of applications in ecology, evolution and more widely, including for example: models of elephants in Amboseli; mackerel in the North East Atlantic; local butterfly populations; but also evolution of pathogens; social network analysis; and statistical physics (see Didelot et al. 2011; Prangle et al. 2016; van der Vaart et al. 2016). In most of these cases the challenges of parameter estimation and model comparison are both of importance, but implementation can prove computationally expensive. This project aims to improve ABC methods and to collaborate with model builders to help them in fitting models to data. Initial focus will be on IBMs developed for fisheries management by CEFAS, part of the UK government,

ABC compares model outputs with data and is particularly useful for statistical inference where the model is only available as a computer simulator such as an IBM. ABC is a relatively new field of research, and is a hot topic in statistics and several applied fields (Beaumont 2010). There are many open problems in this area, some of which lie at the heart of this project, including:
· ABC for high-dimensional parameter spaces. IBMs often have more than 10 parameters that have to be estimated by fitting the model to data: more than in many current applications of ABC.
· ABC for computationally expensive simulators. Some IBMs take several minutes to complete a run. This is a problem because existing ABC methods require thousands of runs to obtain reliable results.
This project will develop new methods to address these issues, driven by the need for accurate fisheries models to guide fisheries management.

Training and skills:
The student will spend time at CEFAS learning how models are used in managing fisheries. At the University of Warwick, the student will learn to program in several languages such as R or python, and to develop new methods in mathematics and biology. They will be part of the Department of Statistics at Warwick, which contains one of the leading groups in computational statistics and machine learning in the UK. The student will become an expert in this field, aided by participating in the departmental training for new PhD students. This training includes focused study groups, and broader seminar programmes.

Partners and collaboration:
CEFAS is an executive agency of DEFRA and the UK’s most diverse applied marine science centre with over 500 members of staff, including modellers, economists, biologists, chemists, physicists, social scientists, and engineers. Cefas helps shape and implement marine policy through internationally renowned science and collaborative relationships that span the EU, UK government, non¬governmental organisations.
The student will collaborate with Prof. Richard Sibly, University of Reading: an expert in behavioral and physiological ecology and IBMs.
The supervisory team have been collaborating over >3 years on several projects, e.g., 3 NERC SCENARIO CASE studentships. Current projects encompass IBMs of Mackerel and Bass.

Funding Notes

This funding provides full tuition fees at the Home/EU rate, pays an annual stipend in line with UK Research Councils (currently £15,009) and a research training support grant (RTSG) of £8,000


Further reading:
Beaumont (2010) “ABC in Evolution and Ecology.” Annual Review of Ecology, Evolution, and Systematics 41: 379–406.
Didelot et al. (2011) “Likelihood-Free Estimation of Model Evidence.” Bayesian Analysis 6 (1): 49–76.
Prangle et al. (2016) “A Rare Event Approach to High Dimensional ABC.” Arxiv.
van der Vaart et al. (2016) “Predicting How Many Animals Will Be Where: How to Build, Calibrate
and Evaluate IBMs.” Ecological Modelling 326: 113–23.

How good is research at University of Warwick in Agriculture, Veterinary and Food Science?

FTE Category A staff submitted: 12.60

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.