University College London Featured PhD Programmes
University of Oxford Featured PhD Programmes
University of Oxford Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Life Science Zurich Graduate School Featured PhD Programmes

Are bee viruses driving heritable symbiont success?


Project Description

Oxford Brookes University
Faculty of Health and Life Sciences,
Department of Biomedical and Medical Sciences

3 Year, full-time PhD studentship
Eligibility: Home UK/EU applicants who must be permanently resident in UK/EU
Closing date: 31 December 2019
Start date: September 2020
Interview: w/c 13 January 2020
Bursary p.a.: Bursary equivalent to UKRI national minimum stipend plus fees (2019/20 bursary rate is £15,009)
University fees and bench fees at the Home/EU rate will be met by the University for the 3 years of the Studentship.
Supervisors: Dr. Michael Gerth, Prof Stewart Thompson, Dr. Daniela Nunes, Dr. Andrew Jones

Project:

Background
Inherited microbes are bacteria that live in close association with various animals, and are transmitted from mother to offspring. It is estimated that more than half of all terrestrial arthropod species carry one or more inherited symbionts, but it is not fully understood how the bacteria can reach such high incidence rates. In order to be successful, the symbionts must not only be able to shift hosts, but also to establish in novel hosts without imposing high fitness costs. Recently, it has been demonstrated that inherited symbionts may protect their hosts from certain pathogens. Such protective phenotypes are potentially beneficial in terms of host fitness, and thus could aid symbiont establishment. This prediction is supported through ecological modeling, but has rarely been tested in natural settings.
Aims
1) To determine if symbiont mediated pathogen blocking can drive the evolutionary success of inherited microbes.
2) To determine symbiont factors that contribute to pathogen blocking phenotypes.

Workplan
Solitary bees and Wolbachia bacteria will be used as model host/symbiont system. The candidate will investigate natural populations of bees and measure symbiont and viral titres in different species collected in and around Oxfordshire. These data will be used to determine if symbiont infection status predicts viral loads. Further, the candidate will characterize symbiont genomes through Nanopore and Illumina sequencing and use pool-Seq to determine which genomic features of the symbionts correlate negatively with viral presence. Further, novel viruses potentially interacting with symbionts will be described through viral metagenomics of solitary bee samples.

For informal inquiries about the project and the application process please contact Dr Michael Gerth:

Funding Notes

Requirements:
Applicants should have a first or upper second class honours degree from a Higher Education Institution in the UK or acceptable equivalent qualification in biological science or related discipline. EU Applicants must have a valid IELTS Academic test certificate (or equivalent) with an overall minimum score of 7.0 and no score below 6.0 issued in the last 2 years by an approved test centre.

How to apply:
Applications should be sent to and should include the following application form:
View Website

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.