University of Sheffield Featured PhD Programmes
Ulster University Featured PhD Programmes
University of Portsmouth Featured PhD Programmes
Newcastle University Featured PhD Programmes
University of Hull Featured PhD Programmes

Artificial Intelligence Assisted Dark Universe Science

  • Full or part time
  • Application Deadline
    Friday, January 31, 2020
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

In June 2022 the European Space Agency Euclid mission will launch. The objectives of the Euclid mission are to make a high-resolution visible wavelength map of the sky to image over three billion galaxies, and to measure near-infrared spectra for several tens of millions of galaxies. By using this data one can create 3D maps of dark matter and determine the properties of dark energy – these dark components account for 95% of the mass-energy content of the Universe and yet their nature is unknown.

One of the primary ways to determine dark energy properties from Euclid is to measure the shapes of galaxies in order to use a statistical method known as weak lensing. However, the ability to measure galaxy shapes is hampered by the quality of images from the Euclid CCDs. In particular in space CCDs are subject to an effect known as Charge Transfer Inefficiency (CTI) caused by impact of cosmic rays on the Silicon of the detectors. Accounting for and correcting the effect of CTI is required for high quality dark Universe science.

This project will use Machine Learning, deep neural network, methods to correct images for the effect of CTI. It will involve working closely with the Euclid engineering teams to understand the images and the impact of cosmic rays. It will also involve creating a machine learning model that can correct the images whilst maintaining the integrity of the science that can be inferred from the images. This project will then input any findings into an end-to-end pipeline to assess the impact on the inference of cosmological parameters on the ability to correct for CTI.

Desired Knowledge and Skills

• Undergraduate in physics, astrophysics or an associated field
• Strong computational skills


Applications submitted by 31st January 2020 will be given full consideration. We will continue accepting applications until all places are filled. After we receive your application, we will select candidates for interviews. If you are selected, you will be invited for an interview at MSSL. You will have the opportunity to see the laboratory, students' flats and talk to current students. The studentships are for the advertised projects only. In your application, please specify which project you want to apply for.

To apply, please visit the Online Application page, select department of "Space & Climate Physics" and programme type of "Postgraduate Research". After pushing "Search Now" button, select "RRDSPSSING01: Research Degree: Space and Climate Physics" for Full-time or Part-time mode.
Our Online Applications page can be found here:

Entry requirements

An upper second-class Bachelor’s degree, or a second-class Bachelor’s degree together with a Master's degree from a UK university in a relevant subject, or an equivalent overseas qualification.

Students from the UK or those from the EU who meet the residency requirements (3 years' full-time residency in the UK) are potentially eligible for a Science and Technology Facilities Council (STFC) studentship.

Funding Notes

These pay UK/EU tuition fees and a maintenance allowance for 3.5 years (subject to the PhD upgrade review).

EU students who do not meet eligibility requirements still qualify for the UK/EU fees rate, but not the STFC maintenance allowance.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2020
All rights reserved.