Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Assessing the capacity of seagrass meadows in the Solent (UK) for blue carbon sequestration


   School of Biological Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr F Ragazzola, Dr S Reynolds,, Dr Marianna Cerasuolo  No more applications being accepted  Competition Funded PhD Project (European/UK Students Only)

About the Project

Applications are invited for a fully-funded three year PhD to commence in October 2020.

The PhD will be based in the Faculty of Science and Health, and will be supervised by Dr Federica Ragazzola, Dr Sarah Reynolds and Dr Marianna Cerasuolo.

The work on this project will involve:
- Characterization and distribution of the seagrass meadows in the Solent (UK)
- Quantification of the blue carbon stock of the meadows
- Modelling the meadows’ carbon stock under future climate conditions

Human actions have increased carbon dioxide concentrations in the atmosphere to levels higher than any measured in the past 160,000 years. Carbon sequestration by natural systems may be a solution for slowing down atmospheric CO2 increases. The sequestration of carbon into ocean sediments by marine ecosystems for long-term storage is termed blue carbon. Compared to terrestrial carbon storage, whose accumulation is very slow and can be easily released (e.g. by fires), blue carbon can provide CO2 sequestration from the atmosphere for decades to millennia.

Seagrass meadows are one of the main carbon sinks in marine coastal environments. They are important ecosystem engineers and provide various ecological services. In addition to providing crucial habitat for a range of fish and invertebrate species, seagrass meadows also promote a range of environmental benefits such as sediment stabilization, wave attenuation, increased water quality and light availability. They also represent an important economic asset. For instance, seagrass is estimated to generate approximately $1.9 trillion per year in the form of nutrient cycling. Moreover, it is estimated that globally as much as 19.9 Pg of organic carbon is stored in the meadows (blue carbon).

The aim of the project is to assess the blue carbon storage capacity of the seagrass meadows in the Solent. The Solent is a unique area because of its unusual tidal regime, including double tides and long periods of tidal stand at high and low tide. It is composed of extensive intertidal mudflats, sandbanks, coastal lagoons and grazing marsh hosting a rich wildlife. These vital carbon sinks will lock carbon away from rising atmospheric contributions of CO2, thereby mitigating climate change, particularly by suppressing ocean acidification. Once the blue carbon storage capacity is determined from field sampling and chemical analyses, future changes in blue carbon storage and habitat distribution under different climate change scenarios will be modelled.

General admissions criteria
You’ll need an upper second class honours degree from an internationally recognised university or a Master’s degree in an appropriate subject. In exceptional cases, we may consider equivalent professional experience and/or qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.

Specific candidate requirements
We are looking for a talented and enthusiastic student with a strong background in marine biology, environmental sciences or marine plant/macroalgae physiology. Knowledge of data visualization tools (i.e. GIS) and experience in modelling is also desirable but not essential.

How to Apply
We’d encourage you to contact Dr Federica Ragazzola ([Email Address Removed]) to discuss your interest before you apply, quoting the project code.

When you are ready to apply, you can use our online application form. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV. Our ‘How to Apply’ page offers further guidance on the PhD application process.

If you want to be considered for this funded PhD opportunity you must quote project code BIOL4751020 when applying.


Funding Notes

The bursary is available to UK and EU students only and covers tuition fees and an annual maintenance grant of £15,009 (UKRI 2019/20 rate) for three years. Bursary recipients will also receive up to £1,500 per year for research project costs, as well as office space and computing facilities.