University of Edinburgh Featured PhD Programmes
University of Southampton Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
University of Bristol Featured PhD Programmes

Assessing the rock record of hazardous pulsatory pyroclastic density currents

  • Full or part time
  • Application Deadline
    Monday, January 06, 2020
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Pyroclastic density currents (PDCs) are hot, density-driven flows of gas, rock and ash generated during explosive volcanic eruptions, or from the collapse of lava domes (e.g. Sparks, 1976; Fisher, 1979; Branney and Kokelaar, 2002; Cas et al. 2011). They pose a catastrophic geological hazard, and have caused >90 000 deaths since 1600 AD (Auker et al. 2013). Improved understanding of PDCs will enable us to better understand the explosive eruptions that generate them, improving our preparedness for future volcanic events. However, these deadly hazards are rarely observed up close and are difficult to analyse in real-time. To understand the flow dynamics of density currents we must use models and interpretations of their deposits (e.g. Smith N and Kokelaar, 2013; Rowley et al. 2014, Williams et al. 2014, Sulpizio et al. 2014; Lube et al. 2019, Pollock et al 2019, Smith 2018, 2019).

Interpreting the rock record at volcanoes is the primary way in which volcanologists assess the hazards that the volcano poses to local communities. However, the rock record of pyroclastic density currents is incomplete – currents can pass over the landscape without depositing and they can even erode their own deposits. Sometimes the sedimentary structures within these deposits are difficult to interpret. But, deciphering the structures in that deposit enables us to understand the evolution of an eruption; was there a single, large sustained current, or a series of discrete currents, possibly prior to a climactic caldera collapse? Did multiple currents traverse different areas of the surrounding landscape, or was there a focussed zone of activity?

The number of PDCs generated during an eruption has typically been interpreted by stratigraphic evidence for a cessation in flow that defines discrete “flow-units” (e.g. Brown and Branney 2013). However, in a study where sufficient exposures were available for comparison (Smith N, 2012) it was found that different numbers of flow-units can be recorded in proximal and distal exposures, demonstrating that waxing and waning (“unsteadiness”) along a current’s run-out can create a contradictory picture of flow-units in different locations. Thus, there remains a question on the use of stratigraphic markers to define numbers of discrete PDCs.

This PhD will use field observations and laboratory experiments to explore how changes in PDC dynamics are recorded in volcanic stratigraphy, and how this information can be used to better reconstruct eruptive activity. The work will focus on how variations in current steadiness, mass flux, particle size and substrate can impact current run-out and the deposition of flow-units.

Funding Notes

Eligible for funding under the NERC Panorama DTP (stipend and UK/EU fees for 3.5 years)

View Website

1) Contact the supervisor of your chosen project to register your interest. Please note that you can only apply for 1 project within the DTP.

2) Apply online - View Website

The programme code is ‘NERC PANORAMA DTP’. Section 10 request information about the research area - you should input the title of the project that you wish to be considered for and the supervisors’ names.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.