Heriot-Watt University Featured PhD Programmes
Aberdeen University Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
Anglia Ruskin University Featured PhD Programmes
University of Bristol Featured PhD Programmes

Automatic composition, optimisation and adaptation of multi-component predictive systems

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Funded PhD Project (Students Worldwide)
    Funded PhD Project (Students Worldwide)

Project Description

Applications are invited for a 3 year, fully funded PhD research studentship to work on a project entitled "Automatic composition, optimisation and adaptation of multi-component predictive systems".

The research conducted in this project will build on a recent research in Prof. Gabrys group concerned with the automation of predictive systems building, deployment and maintenance. It will also extend an open-source software (https://github.com/dsibournemouth/autoweka) which allows to automatically compose, optimise and adapt mutlicomponent predictive systems (MCPS) potentially consisting of multiple data preprocessing, data transformation, feature and predictive model selection and postprocessing steps. Our findings, supported by extensive experimental analysis, and further research in this area are expected to have a major impact on development of high quality predictive models as well as their maintenance and scalability aspects needed in modern applications and deployment scenarios.

The student will be joining the Advanced Analytics Institute in Sydney and work primarily with Prof. Gabrys but will also have an outstanding opportunity to gain a diverse experience of both academic and commercial environments for which the AAi is very well known.

Applicants should have a very strong mathematical and computational background and hold a good Bachelor or Master's degree in computer science, mathematics, physics, engineering, statistics or a similar discipline. Additionally the candidate should have very strong programming skills and experience using any or combination of Java, C++, Python, R and Matlab. Knowledge of and exposure to the big data platforms and technologies will be an advantage.

Before the formal application please contact Prof Bogdan Gabrys, e-mail: to discuss your suitability. Further PhD subject relevant information can be found on the following www pages: http://bogdan-gabrys.com.

How to Apply


Interested candidates should follow the application procedure listed on the University of Technology Sydney's web pages: https://www.uts.edu.au/research-and-teaching/research-degrees/applying-uts/how-apply and apply following this link: https://msa.uts.edu.au/eStudent/S1/eApplications/eAppLogin.aspx?f=UTS.WAP.LOGIN.WEB.

Funding Notes

The studentship carries a basic remuneration of $27,082 pa tax-free and a waiver of the full-time research student fee. There are no restrictions on the nationality of the applicants and the selection will be based on the candidate's qualifications and experience.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.