Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
Typical steady CFD is performed using the Reynolds-Averaged Navier-Stokes equations, however accuracy of the flowfield is strongly dependent on the turbulence model used and can be case dependent. Large Eddy Simulation produces accurate flow data consistently for a wide variety of complex flows. Although LES requires careful case setup and solution times are orders of magnitude larger than RANS, the accuracy, data detail and cost of LES relative to physical testing makes its use attractive for many applications. Modern Computational Fluid Dynamics (CFD) solvers utilise High Performance Computing (HPC) to reduce simulation turnaround time. However, the pre-processing (mesh generation) and post-processing (data extraction + visualisation) have now become bottlenecks requiring significant manual intervention and time. Modelling of flow features such as separation in gas-turbine internal cooling ducts lend themselves towards automation.
The project would involve generation of modules to automate mesh generation, run steady and unsteady modelling of such flows, extract data, perform machine learning and link these within a knowledge-based system. This would allow LES to be consistently deployed with minimal human intervention for a range of flows. Applicants would benefit from experience in fluid dynamics, CFD, HPC, Fortran/C++/Python.
Funding Notes
References

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in London, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Testing Robotics and Autonomous Systems Using Search-based Techniques
University of Bradford
Automating knowledge synthesis in biomedical literature using AI and language models
University of Bristol
A unified approach based on semantic models and continuous deep learning to sensor data uncertainty and inconsistency in smart systems - Project ID SOC0025
Edinburgh Napier University