Looking to list your PhD opportunities? Log in here.
About the Project
Please note that advertised projects are sample projects and prospective applicants are not required to apply to one of the advertised projects, but are welcome to discuss broader research interests with the academic named in the advert - and/or to apply with their own research proposal.
The Centre for Doctoral Training in Cyber Security for the Everyday at Royal Holloway University of London seeks to recruit a PhD student to explore the role that computer models and environments play in ‘automating’ responses to cyber security and their (geo)political implications.
Greater automation – or even autonomous – techniques to reportedly respond to threats, address vulnerabilities, and improve resilience are becoming increasingly prominent across a range of arenas. Such automation requires the production of computer models and environments that have become part of everyday (geo)political contestation in various places. Whether through models and environments to enhance the detection of malware and threats in commercial setting, to verifying identity to government systems, to the provision and deployment of cyber ranges or the construction of ‘digital twins’ in militaries and engineering, they are all part of the everyday practice of contemporary cyber security.
Such use of models and environments affects how people understand and respond to the world, which can have significant (geo)political effects. This ranges from geopolitical assessments of the adversarial behaviours of states, the ‘optimisation’ of cyber operations, to the political and ethical implications of denying access to differently positioning individuals and communities to critical state services. Flexibility over the cases chosen and aims will be supported – but may include questions such as, how do models and environments become interwoven into (geo)political decision-making? How do certain recursive machine learning algorithms become embedded into models and environments? How, why and when do the environmental assumptions transform a model’s ‘outputs’? And when are there moments for (geo)political reflection and scrutiny?
This project then seeks to explore and interrogate how such models and environments are built, negotiated, and used. It is expected that the candidate will engage in an inventive use of predominantly social science methodologies tailored by the candidate’s skills and interests, such as ethnography and creative workshops, to quantitative methods as necessary. Applicants should have an interest in cyber security, with an undergraduate degree in a field cognate to Anthropology, Human Geography, Sociology or Science and Technology Studies with an ambition to engage in some technological detail. Applicants with other backgrounds are encouraged with an expectation that they will engage in social science methods.
Prospective applications are welcome to discuss with the project supervisor Dr Andrew Dwyer- Andrew.Dwyer@rhul.ac.uk
Funding Notes
Please ensure you are familiar with the eligibility criteria set by UKRI and their terms and conditions.
In order to apply please visit the CDT website and follow the application instructions.
www.royalholloway.ac.uk/cdt
The studentship includes
* Tuition fees:
* Maintenance: £23,668.00 for each academic year.
Email Now
Why not add a message here
The information you submit to Royal Holloway, University of London will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Egham, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Design, Implementation and Evaluation of Non-Cooperative Game Theoretic Models for Cyber Security
Kingston University
Causal inference for resilient and robust cyber-security environments
Loughborough University
Novel Technologies for Cyber-Physical Security
University of Southampton