Coventry University Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
The University of Manchester Featured PhD Programmes

Automorphic forms: arithmetic and analytic interfaces


School of Mathematical Sciences

Wednesday, January 27, 2021 Competition Funded PhD Project (Students Worldwide)

About the Project

The School of Mathematical Sciences of Queen Mary University of London invite applications for a PhD project commencing in September 2021.

This project will be supervised by Dr Abhishek Saha.

The goal of this project is to better understand the properties of automorphic forms of higher rank, especially in situations involving high ramification. Automorphic forms are central objects in the Langlands program, a vast web of theorems and conjectures that connects concepts coming from number theory, representation theory and geometry. The simplest examples of automorphic forms include Dirichlet characters and classical modular forms, both of which have proved to be of profound importance in modern mathematics. More generally, automorphic forms are complex valued functions that can be naturally viewed as vectors inside representations known as automorphic representations. This viewpoint allows one to associate automorphic forms to any reductive algebraic group. From a different point of view, automorphic forms include (as special cases) eigenfunctions of Laplacians on arithmetic manifolds. This viewpoint allows one to bring in a whole range of additional perspectives coming from analysis, spectral theory and quantum mechanics. Automorphic forms and the L-functions attached to them have been key ingredients in the solutions of many famous and difficult problems, such as Wiles’ proof of Fermat’s last Theorem and Duke’s work on the representations of algebraic integers by ternary quadratic forms.

A central theme in modern number theory is to understand key properties of automorphic forms and their associated L-functions as one or more of their defining parameters vary. The finite or non-archimedean part of these parameters can be captured by a fundamental arithmetic quantity called the conductor or level (henceforth denoted by N) that measures its total ramification (or complexity at finite primes). The level appears in the functional equation of the attached L-function, as well as (essentially) describes the arithmetic manifold that the automorphic form lives on. Compared to the archimedean aspect, there has been relatively little progress in the level aspect versions of analytic problems about automorphic forms, especially in higher rank.

In this project, the student will investigate key questions related to the themes described above. The tools used will be a mix of algebraic as well as analytic number theory, together with representation theory of p-adic groups. The specfic problems to be solved will depend on the interests of the student (possible examples include sup-norms and other L^p norms, period formulas, etc.)


The application procedure is described on the School website. For further inquiries please contact Dr Abhishek Saha at . This project is eligible for full funding, including support for 3.5 years’ study, additional funds for conference and research visits and funding for relevant IT needs. Applicants interested in the full funding will have to participate in a highly competitive selection process.

Funding Notes

For September 2021 entry: Funding may be available through QMUL Principal's Postgraduate Research Studentships, School of Mathematical Sciences Studentships, and EPSRC DTP, in competition with all other PhD applications.

Studentships will cover tuition fees, and a stipend at standard rates for 3-3.5 years.

We welcome applications for self-funded applicants year-round, for a January, April or September start.

The School of Mathematical Sciences is committed to the equality of opportunities and to advancing women’s careers. As holders of a Bronze Athena SWAN award we offer family friendly benefits and support part-time study.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to Queen Mary University of London will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully



Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.



FindAPhD. Copyright 2005-2020
All rights reserved.