University of Cambridge Featured PhD Programmes
University College London Featured PhD Programmes
University College London Featured PhD Programmes
University of Dundee Featured PhD Programmes
The University of Manchester Featured PhD Programmes

Automorphic forms: arithmetic and analytic interfaces

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

The School of Mathematical Sciences of Queen Mary University of London invite applications for a PhD project commencing either in September 2020 for students seeking funding, or in January 2020 or April 2020 for self-funded students. The deadline for funded applications is the 31st of January 2020. The deadline for China Scholarship Council Scheme applications is 12th January 2020.

This project will be supervised by Dr Abhishek Saha.

The goal of this project is to better understand the properties of automorphic forms of higher rank, especially in situations involving high ramification. Automorphic forms are central objects in the Langlands program, a vast web of theorems and conjectures that connects concepts coming from number theory, representation theory and geometry. The simplest examples of automorphic forms include Dirichlet characters and classical modular forms, both of which have proved to be of profound importance in modern mathematics. More generally, automorphic forms are complex valued functions that can be naturally viewed as vectors inside representations known as automorphic representations. This viewpoint allows one to associate automorphic forms to any reductive algebraic group. From a different point of view, automorphic forms include (as special cases) eigenfunctions of Laplacians on arithmetic manifolds. This viewpoint allows one to bring in a whole range of additional perspectives coming from analysis, spectral theory and quantum mechanics. Automorphic forms and the L-functions attached to them have been key ingredients in the solutions of many famous and difficult problems, such as Wiles’ proof of Fermat’s last Theorem and Duke’s work on the representations of algebraic integers by ternary quadratic forms.

A central theme in modern number theory is to understand key properties of automorphic forms and their associated L-functions as one or more of their defining parameters vary. The finite or non-archimedean part of these parameters can be captured by a fundamental arithmetic quantity called the conductor or level (henceforth denoted by N) that measures its total ramification (or complexity at finite primes). The level appears in the functional equation of the attached L-function, as well as (essentially) describes the arithmetic manifold that the automorphic form lives on. Compared to the archimedean aspect, there has been relatively little progress in the level aspect versions of analytic problems about automorphic forms, especially in higher rank.

In this project, the student will investigate key questions related to the themes described above. The tools used will be a mix of algebraic as well as analytic number theory, together with representation theory of p-adic groups. The specfic problems to be solved will depend on the interests of the student (possible examples include sup-norms and other L^p norms, period formulas, etc.)

The application procedure is described on the School website. For further inquiries please contact Dr Abhishek Saha at . This project is eligible for full funding, including support for 3.5 years’ study, additional funds for conference and research visits and funding for relevant IT needs. Applicants interested in the full funding will have to participate in a highly competitive selection process.

Funding Notes

This project is eligible for full funding, including support for 3.5 years’ study, additional funds for conference and research visits and funding for relevant IT needs.

This project can be undertaken as a self-funded project. Self-funded applications are accepted year-round for a January, April or September start.

We welcome applicants through the China Scholarship Council Scheme (deadline for applications 12th January 2020).

The School of Mathematical Sciences is committed to the equality of opportunities and to advancing women’s careers. As holders of a Bronze Athena SWAN award we offer family friendly benefits and support part-time study.

Related Subjects

How good is research at Queen Mary University of London in Mathematical Sciences?

FTE Category A staff submitted: 34.80

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.