Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

CeMM Featured PhD Programmes
University of Kent Featured PhD Programmes
Bournemouth University Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Manchester Featured PhD Programmes

Balancing immunity in the face of variable nutritional resources and natural infection in a wild rodent

This project is no longer listed in the FindAPhD
database and may not be available.

Click here to search the FindAPhD database
for PhD studentship opportunities
  • Full or part time
    Dr A Pedersen
    Prof A Fenton
    Dr S Babayan
  • Application Deadline
    No more applications being accepted
  • Competition Funded PhD Project (Students Worldwide)
    Competition Funded PhD Project (Students Worldwide)

Project Description

Parasite infections and resource scarcity are common threats to the wellbeing of wild populations and domestic animals. Chronic helminth infections in particular compete with their hosts for nutritional resources, and are a global cause of productivity loss in livestock, estimated at £1.2 billion. Despite the growing knowledge of the dynamics of parasite infection in livestock and wild populations, our understanding of how the host’s immune system mounts and regulates its responses to infection under variable resource availability is limited. This knowledge gap is surprising, given that immune responses are the host’s main defence mechanism against parasites. So far, a major limitation to studying associations between parasite infection, resource scarcity, and immune responses outside of laboratory settings has been the lack of suitable host-parasite systems. In particular, if we want to tease apart the ecological and demographic determinants of infection by a natural parasite and the immune response in the wild, we need a system in which we can carry out experimental manipulations of parasite infection and food availability both in wild populations and in laboratory settings, with detailed immunological read-outs and natural (i.e. co-evolved) host-parasite combinations. This is especially important for parasite species that cause long-lived, chronic infections, such as helminths — as these parasites survive within the host by directly modulating the immune response and thus form long-term parasitic associations with the host immune system that competes for host nutrients.
We have established a wild mouse—parasite community system in order to study the consequences of infection for host health and fitness. Wood mice (Apodemus sylvaticus) are a very common small mammal in the UK and support a diverse community of helminths (nematodes and cestodes), protozoa, viruses, and bacteria. We have developed the microscopy, immunological and molecular tools to identify >30 unique species, antigen-specific antibodies, and transcriptomes to provide sequences for immune gene expression. Additionally, we have a wild-derived colony of mice and their naturally-infecting parasites, with which we can pair infection/coinfection experiments and varying experimental diets to the wild studies, allowing us to measure and compare immune responses in controlled settings with those in the wild.
Our recent findings suggest that wild mice vary greatly in their general and parasite-specific immune responses and that nutritional supplementation mitigates the detrimental effects of resource scarcity on survival and reproduction. However, we have yet to test what demographic and ecological factors determine this variation, and importantly, how individuals balance physiological and immunological needs under limited resources when faced with natural infection. The overall aim of this interdisciplinary studentship is to combine ecological field studies, controlled laboratory studies, and classic immunological techniques with novel tools from machine learning in order to identify causal links between food availability, immune responses to infection, and resistance to parasite infection. This studentship will provide mechanistic insight into the how nutritional supplementation, coupled with anthelminthic treatment, can improve the control of infection and maintenance of optimal growth. The impact of this research will stretch from ecological to veterinary health and be of interest to applied and translational immunologists.

Amy Pedersen: http://pedersen.bio.ed.ac.uk/page11/page15/page15.html

Simon Babayan: https://www.gla.ac.uk/researchinstitutes/bahcm/staff/simonbabayan/simonbabayan/

Funding Notes

The “Apply online” button on this page will take you to our Online Application checklist. Please complete each step and download the checklist which will provide a list of funding options and guide you through the application process.

If you would like us to consider you for one of our scholarships you must apply by 12 noon on 13 December 2018 at the latest.

References

Babayan, S., Wi, L., Hamilton, G., Kilbride, E., Rynkiewicz, E., Clerc, M, and Pedersen, A.B. 2018. The immune and non-immune pathways that drive chronic gastrointestinal helminth burdens in the wild. Frontiers in Immunology, 9, 56.
Pedersen, A.B. and Grieves, T. 2008. The interaction of parasites and resources cause crashes in a wild mouse population. Journal of Animal Ecology 77, 370-377.
Coltherd, J.C., Babayan, S.A., Bunger, L., Kyriazakis, I., Allen, J.E., and Houdijk, J.G.M. 2011. Interactive effects of protein nutrition, genetic growth potential and Heligmosomoides bakeri infection pressure on resilience and resistance in mice. Parasitology, 138 (10). pp. 1305-1315.

How good is research at University of Edinburgh in Biological Sciences?

FTE Category A staff submitted: 109.70

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities


FindAPhD. Copyright 2005-2018
All rights reserved.