Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  BARIToNE Project 01 - Defining the genetic basis of barley metabolite content to improve nutrient use efficiency, crop quality and resilience with reduced inputs


   School of Life Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr W Allwood, Dr Kelly Houston, Prof Tim George, Dr P Hemsley  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

Principal Industrial Supervisor – Dr. Barry Harrison, Scotch Whisky Research Institute (SWRI)

Principal Academic Supervisors - Dr. Will Allwood, Dr. Kelly Houston & Dr. Tim George, James Hutton Institute (JHI)

Additional Supervisors – Dr. Piers Hemsley (University of Dundee)

This project will be based at the James Hutton Institute, Invergowrie and the appointed student will registered at the University of Dundee as the degree awarding institution.

Barley is a crop of great importance with respect to both spring malting barley for the renowned Scotch whisky industry, and winter barley for animal feeds. Only high-quality barley from a limited number of varieties is taken forward to malting and distilling, therefore greatly influencing market value. 

Barley is regarded as a high-input cereal and therefore contributes significantly to the overall carbon footprint of whiskies and beers. Optimum nitrogen (N) levels promote the enzymatic breakdown of starch in raw grains to sugars during malting. The current solution is the addition of N fertilisers which enhance yield and assure quality. However, the energy costs of producing N fertiliser and an unbalanced N cycle in soils which produces ghg emissions in the form NOx contribute most to the unfavourable environmental footprint. Improving N recovery and utilisation will reduce the need for inputs and reduce pollution (key to the green recovery). 

The aim of the PhD will be to assess and improve our understanding of the genetic and metabolic basis of high nitrogen use efficiency and photosynthetic capacity in barley, whilst producing grains with high distilling quality. 

Key to barley quality is the capacity to maintain carbon assimilation and export to developing grains under a range of conditions. This requires constant metabolic adjustment in response to environmental variation. A first step towards breeding metabolically resilient barley will be to define the genetic architecture underpinning the optimisation of metabolism. A further objective is to link an understanding of metabolic resilience to key yield and quality traits.

To achieve this, barley populations will be screened for high photosynthetic rates and efficient grain import, under reduced N inputs and with alternative fertilisers (e.g. municipal compost, distillery co- products). This data will be used in a genome wide association study (GWAS) to identify Quantitative Trait Loci (QTL) and candidate genes contributing to variation in these traits under different nitrogen conditions. Additionally, the impact of these nitrogen treatments on the metabolome will be determined. Laboratory scale micro-malting, mashing, fermentation and distillation can then be used to produce spirit and assess the impact on alcohol yield and flavour profile. Understanding the genetics and physiology underpinning these traits will provide knowledge, and genetic and metabolic QTL, to aid breeding towards reduced inputs and environmental footprint. 

The project offers excellent interdisciplinary training, developing skills in plant growth and phenotyping, genomics, metabolomics, flavour chemistry, and sensory analysis, as well as statistical analysis and modelling.

If you would like to discuss this project in more detail, please contact Will Allwood ([Email Address Removed]) for more information.

How to Apply

Please visit the main BARIToNE programme page for more details

Agriculture (1) Biological Sciences (4) Chemistry (6) Computer Science (8)

Funding Notes

Studentship will cover a full UKRI stipend (currently £15,609/annum) tuition fees, training and travel budget. Part-time study is an option (please indicate on your application) and we offer enhanced support to individuals with primary care responsibilities or disabilities.
Applications are welcome from all nationalities, however the proportion of international students appointed through the BARIToNE CTP is capped at 30% (see the Training Grant T&C's for more information). Applicants are expected to hold (about to achieve) at least a 2:1 Honours degree (or demonstrable equivalent experience) in a relevant subject (e.g. Biology, Genetics, Plant Sciences, Ecology, Soil Science, Computer Sciences etc.).

References

Allwood, J.W., Martinez-Martin, P., Xu, Y., Cowan, A., Pont, S., Griffiths, I., Sungurtas, J., Clarke, S., Goodacre, R., Marshall, A., Stewart, D. & Howarth, C. (2021). Assessing the impact of nitrogen supplementation in oats across multiple growth locations and years with targeted phenotyping and high-resolution metabolite profiling approaches, Food Chem. 355: 129585. https://doi.org/10.1016/j.foodchem.2021.129585
Allwood, J.W., Chandra, S., Xu, Y., Dunn, W.B., Correa, E., Hopkins, L., Goodacre, R., Tobin, A.K., Bowsher, C.G. (2015). Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions. Phytochemistry 115: 99-111. https://doi.org/10.1016/j.phytochem.2015.01.007
Allwood, J.W., Woznicki, T.L., Xu, Y., Foito, A., Aaby, K., Sungurtas, J., Freitag, S., Goodacre, R., Stewart, D., Remberg, S.F., Heide, O.M. & Sønsteby, A. (2019). Application of HPLC-PDA-MS metabolite profiling to investigate the effect of growth temperature and day length on blackcurrant fruit. Metabolomics 15: Article No. 12. https://dx.doi.org/10.1007/s11306-018-1462-5
Houston, K., Russell, J., Schreiber, M. et al. (2014). A genome wide association scan for (1,3;1,4)-β-glucan content in the grain of contemporary 2-row Spring and Winter barleys. BMC Genomics 15: 907. https://doi.org/10.1186/1471-2164-15-907
Matros, A., Houston, K., Tucker, M.R. Schreiber, M., Berger, B., Aubert, M.K., Wilkinson, L.G., Witzel, K., Waugh, R., Seiffert, U., Burton, R.A. (2021). Genome-wide association study reveals the genetic complexity of fructan accumulation patterns in barley grain, Journal of Experimental Botany 72(7), 2383–2402, https://doi.org/10.1093/jxb/erab002
Skiba, M.W., George, T.S., Baggs, E.M., Daniell. T.J. (2011). Plant influence on nitrification. Biochem Soc Trans 39(1): 275–278. https://doi.org/10.1042/BST0390275
Cope, J.E., Russell, J., Norton, G.J., George, T.S., Newton, A.C. (2020). Assessing the variation in manganese use efficiency traits in Scottish barley landrace Bere (Hordeum vulgare L.). Annals of Botany 126(2): 289–300. https://doi.org/10.1093/aob/mcaa079

Where will I study?