Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  (BBSRC DTP) Accelerating a biowaste valorisation technology through the use of digital modelling techniques


   Department of Chemical Engineering

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr D Zhang, Dr J Winterburn  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

Developing sustainable bio-manufacturing routes for industrial production of both platform and high-value chemicals is a high priority in establishing a low carbon economy. Biomass waste such as rapeseed meal (RSM) can be used as a sustainable feedstock to produce a range of valuable compounds including proteins, biopolymers and phenolics. To enable biowaste valorisation and improve performance of bio-based processes at larger scales, it is of critical importance to investigate the biological and kinetic mechanisms of the underlying bioprocess at each step through a whole-systems approach.

In particular, to accelerate the understanding and upscaling of biowaste derived industrial biotechnologies, an innovative approach is to apply frontier digital modelling techniques (machine learning, kinetic modelling, data analytics) to efficiently analyse bioprocess data to discover undetermined process knowledge and guide design of experiments (DoE). This data-driven approach will greatly facilitate bioprocess knowledge generation and promote the translation of bioscience into novel biotechnologies at industrial scales.

We have developed a number of digital tools for bioprocess multiscale modelling, metabolic flux analysis, optimisation, and scale-up. We have also collected substantial experimental data from the RSM valorisation process. Together with these previous achievements, this PhD project aims to investigate the underlying process mechanisms of RSM phenolic extraction, protein extraction, hydrolysis, and fermentation for biopolymer production, to identify the optimal operating conditions for each bioprocessing step and to verify the predictions through inverse design of experiments (inverse DoE). This will be carried out using our digital tools to screen our dataset and extract essential bioprocess knowledge.

In addition, this PhD project will enhance fermentation and separation techniques for valuable biorenewables synthesis and purification, potentially facilitating further decreases in production and improvements in environmental impact. The project will build on currently funded work with industrial collaborators to develop a controllable, scalable integrated bioprocess.

https://www.research.manchester.ac.uk/portal/dongda.zhang.html

https://www.research.manchester.ac.uk/portal/james.winterburn.html

Entry Requirements:

Applicants must have obtained, or be about to obtain, at least an upper second class honours degree (or equivalent) in a relevant subject.

UK applicants interested in this project should make direct contact with the Principal Supervisor to arrange to discuss the project further as soon as possible. International applicants (including EU nationals) must ensure they meet the academic eligibility criteria (including English Language) as outlined before contacting potential supervisors to express an interest in their project. Eligibility can be checked via the University Country Specific information page (https://www.manchester.ac.uk/study/international/country-specific-information/).

If your country is not listed you must contact the Doctoral Academy Admissions Team providing a detailed CV (to include academic qualifications – stating degree classification(s) and dates awarded) and relevant transcripts.

Following the review of your qualifications and with support from potential supervisor(s), you will be informed whether you can submit a formal online application.

To be considered for this project you MUST submit a formal online application form - full details on how to apply can be found on the BBSRC DTP website www.manchester.ac.uk/bbsrcdtpstudentships

Biological Sciences (4) Engineering (12) Mathematics (25)

Funding Notes

Funding will cover UK tuition fees/stipend only. The University of Manchester aims to support the most outstanding applicants from outside the UK. We are able to offer a limited number of scholarships that will enable full studentships to be awarded to international applicants. These full studentships will only be awarded to exceptional quality candidates, due to the competitive nature of this scheme.
Equality, diversity and inclusion is fundamental to the success of The University of Manchester, and is at the heart of all of our activities. The full Equality, diversity and inclusion statement can be found on the website https://www.bmh.manchester.ac.uk/study/research/apply/equality-diversity-inclusion/