FREE PhD study and funding virtual fair REGISTER NOW FREE PhD study and funding virtual fair REGISTER NOW

(BBSRC DTP) Testing the accuracy of evolutionary inferences from morphological phylogeny

   Department of Earth and Environmental Sciences

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
  Dr R Sansom, Dr R Garwood, Dr T Gilman  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

Phylogenetic data are fundamental for understanding evolution. Building and analysing trees from genotypic and phenotypic data is necessary to reconstruct evolutionary relationships, diversifications, rates, and dynamics. Molecular data have had a renaissance with respect to development of ‘big data’ approaches, and a plethora of analytical tools. Morphological data are also essential, especially because of their role in analysis of fossils thus providing deep time-perspectives. They are, however, relatively neglected. In order for morphology to enter the 21st century and address big evolutionary questions, it also needs a modern big data approach. This PhD will directly test morphological data, morphological methods, and morphological inferences by asking 1) Are trees inferred from morphological data accurate and reproducible? 2) How important is the inference method to the inferred tree topology? 3) Are hypotheses about evolutionary dynamics (e.g. “early burst”) supported by meta-analysis of multiple datasets rather than individual case studies (i.e. what general evolutionary patterns can be inferred from big morphological data?). This is necessary not only because of the historic difficulties in reproducing published phylogenetic results from the given data, but also the disputes over inference methods from morphology (in particularly parsimony versus Bayesian inference), as well as to address major evolutionary questions. With ambiguity existing over the reproducibility of morphological trees and doubt over the accuracy of the historically dominant inference methods, we face an important (but potentially embarrassing) question: how much do we actually know about morphological evolution?

This interdisciplinary project will study both fossil and extant organisms across the tree of life. It will provide new insights into both the patterns and the mechanisms of macroevolution. It represents a unique opportunity for applicants interested in both evolution in deep time and data handling techniques, and will allow the student to achieve training in a wide range of analytical techniques, including phylogenetics, reproducibility, software engineering, and data analysis in R; these skills will lend themselves to multiple future career paths. 

Entry Requirements

Applicants must have obtained or be about to obtain a First or Upper Second class UK honours degree, or the equivalent qualifications gained outside the UK, in an appropriate area of science, engineering or technology.

Applicants interested in this project should make direct contact with the Primary Supervisor to arrange to discuss the project further as soon as possible.

How To Apply

To be considered for this project you MUST submit a formal online application form - full details on how to apply can be found on the BBSRC DTP website    

Equality, Diversity and Inclusion

Equality, diversity and inclusion is fundamental to the success of The University of Manchester, and is at the heart of all of our activities. The full Equality, diversity and inclusion statement can be found on the website


Funding Notes

Funding will cover tuition fees and stipend only. This scheme is open to both UK and international applicants. However, we are only able to offer a limited number of studentships to applicants outside the UK. Therefore, full studentships will only be awarded to exceptional quality candidates, due to the competitive nature of this scheme.

How good is research at The University of Manchester in Earth Systems and Environmental Sciences?

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities
PhD saved successfully
View saved PhDs