or
Looking to list your PhD opportunities? Log in here.
ELAV/Hu proteins comprise a family of highly conserved neuronal RNA binding proteins important for the development of the nervous system and for neuronal functions. Aberrant regulation of their activity or expression results in a range of neurological phenotypes including learning deficits, epilepsy, synaptic growth defects and neurodegeneration in model organisms. In humans, ELAV/Hu proteins have been associated with schizophrenia, Alzheimer’s and Parkinson’s disease. ELAV/Hu proteins are gene-specific regulators of alternative splicing of mRNAs, but can also affect other aspects of the maturation of an mRNA and its cytoplasmic expression into a protein.
Intriguingly, human Hu proteins can substitute for ELAV in a Drosophila model for alternative splicing regulation. Since ELAV/Hu proteins bind short U-rich motifs embedded in a highly degenerate sequence context, it is thought that multimerization of ELAV/Hu proteins is key to generate target specificity and that this step is highly regulated by cellular signaling. Indeed, ELAV/Hu proteins have numerous sites for post-translational modifications. From initial studies on human Hu proteins, we anticipate that altering phosphorylation will impact dramatically on ELAV function and will generate neurological phenotypes. We aim to dissect how ELAV activity is regulated by phosphorylation in Drosophila genetic and cell culture cell models for neurodegeneration. To obtain mechanistic insights into how phosphorylation impacts on alternative splicing regulation we will combine available structural information for molecular modelling of ELAV multimerization and RNA binding to instruct experimental validation.
Key experimental skills involved:
This project will incorporate a wide range of molecular and cell biology techniques, which will be applied by using the genetic model organism Drosophila and various cell culture models. The project will make use of state-of-the-art cellular imaging to study ELAV function in cells. Further, this project will apply statistical analysis of data and we willl use molecular modelling of available structural information to make predictions how phosphorylations impacts on ELAV multimerization and RNA binding.
For information about research in our laboratory, please visit:
Research output data provided by the Research Excellence Framework (REF)
Click here to see the results for all UK universitiesBased on your current searches we recommend the following search filters.
Check out our other PhDs in Birmingham, United Kingdom
Start a New search with our database of over 4,000 PhDs
Based on your current search criteria we thought you might be interested in these.
How do RNA-binding proteins control splice site selection? A multi-disciplinary approach
University of Leicester
Mechanisms of alternative splicing in neurodegeneration and ageing
University of Sheffield
Decoding the Cross-talk Between RNA-binding Proteins, Phosphorylation, and Molecular Chaperones in Post-Transcriptional Gene Regulation in Toxoplasma gondii
Teesside University