Aberdeen University Featured PhD Programmes
University of Southampton Featured PhD Programmes
University College London Featured PhD Programmes
University College London Featured PhD Programmes
Cardiff University Featured PhD Programmes

BBSRC MIBTP: Investigating the influence of myelin plasticity on neural circuit function


Project Description

Research interests/description of main research theme:

Oligodendrocytes (OL) wrap axons in myelin, an insulting material whose formation in tightly compacted spirals increases the speed of action potentials by up to 10-fold. Traditionally, myelination has been viewed as a static process regulated by the diameter of axons, and remaining unchanged once formed. Recent work has overturned this view by showing that numerous parameters associated with myelination, including OL differentiation and myelin sheath length, are altered when neuronal activity is reduced1,2. This is significant since myelin sheath length is positively linked to axonal conduction velocity (longer sheaths/faster conduction). The implication of these new discoveries are: (1) activity- dependent myelination allows axons to fine-tune their conduction speeds by altering the length of their myelin sheaths; and (2) this phenomenon will contribute to neural plasticity by influencing coincidence detection at the synapse3.

State of the art: Based on the above, activity-dependent myelination is positioned to influence fundamental properties of neural circuit function such as information encoding, yet to date there has been no attempt to investigate the influence of activity-dependent myelination on neural circuit function. This joint project between The Fulton and Marra labs will seek fundamental knowledge on this important question by using quantitative electrophysiological and optical imaging techniques to measure neural network activity in circuits subjected to alterations in myelination.

Scientific approach: The student will use transgenic brain slice cultures where myelination can be visualised and modulated in living tissues, and neural circuit activity recorded using multi-electrode array (MEA) electrophysiology and optical recordings. MEA recordings will allow circuit responses to be recorded following time-locked stimulation, while optical measurements from patch-clamped neurons will provide the means to measure conduction velocities in individual myelinated axons. OL-myelination will be reduced pharmacologically by targeting neuronal activity, or increased by incubating brain slices in conditioned medium isolated from activated microglial cultures. Comparison of recordings under differing culture conditions will allow changes in myelination visualised through live-imaging to be linked to alterations in circuit function.

Training plan: The student will be based in the Fulton lab at the University of Birmingham (UoB) where they will learn to generate forebrain slice cultures isolated from fluorescent OL reporter mice, monitor myelination via imaging of the OL reporter during slice cultivation, and quantify myelination in fixed slices by immunofluorescent assays. The student will also learn to culture microglia and stimulate them to produce pro-myelination factors, and to use this conditioned medium, or pharmacological treatments targeting neuronal activity1, to experimental increase and decrease OL myelination respectively.

Having acquired these fundamental skills the student will work at the Marra lab at the University of Leicester to learn electrophysiological and optical imaging methods for the analysis of cortical neural circuit function in forebrain slice cultures (~ 8 months). The student will also learn to analyse and interpret this circuit activity data. After this training the student will return to UoB to to study cortical circuit function in forebrain slice cultures subjected to alterations in myelination (increased by microglial conditioned medium/ decreased pharmacologically). Alterations in myelination will be confirmed in living slices through imaging of the OL reporter, and recordings of cortical activity obtained using the skills developed in the Marra lab.

Informal enquiries about the post should be directed to Dr Daniel Fulton

For information about research in our laboratories, please visit our lab webpages:
http://www.birmingham.ac.uk/oligodendrocytes
https://www2.le.ac.uk/departments/npb/people/dr-vincenzo-marra-1



HOW TO APPLY:

Apply here https://warwick.ac.uk/fac/cross_fac/mibtp/pgstudy/phd_opportunities/
Select our PhD project Investigating the influence of myelin plasticity on neural circuit function
From the Neuroscience and Behaviour section.

Please view the specific guidance on the Birmingham website https://www.birmingham.ac.uk/research/activity/mibtp/index.aspx

Please also notify MIBTP of your application by completing the online application notification form.
https://warwick.ac.uk/fac/cross_fac/mibtp/pgstudy/phd_opportunities/application/submission

Funding Notes

You can apply for a 4 year BBSRC-funded doctoral fellowship (MIBTP): View Website
Eligibility: UK/EU nationals, residence in the UK is NOT a pre-requisite.

To apply please generate an account: View Website
and select our project. View Website

Deadline: January, 12th. Please, contact me for more info:

References

REFERENCES:
1 Fannon J, Tarmier W & Fulton D (2015) Glia 36: 6937-48. 63:1021-1035. https://doi.org/10.1002/glia.22799
2 Toth E, Rassul SM, Berry M & Fulton D (2019) BioRxiv [Preprint] doi: https://doi.org/10.1101/750083.
3Fields D (2015) Nat Rev Neurosci 16:756-767.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.