Postgrad LIVE! Study Fairs

Bristol

University of Leeds Featured PhD Programmes
Imperial College London Featured PhD Programmes
University of Huddersfield Featured PhD Programmes
University of Kent Featured PhD Programmes
Queen’s University Belfast Featured PhD Programmes

Bioinspired Sensing: Artificial Skin - Investigating and developing a bioinspired structure capable of replicating in some extent skin features

  • Full or part time
  • Application Deadline
    Tuesday, April 30, 2019
  • Competition Funded PhD Project (European/UK Students Only)
    Competition Funded PhD Project (European/UK Students Only)

Project Description

Robotic perception is crucial for robotic systems to advance and perform more and more complex tasks autonomously or semi-autonomously. Tactile sensing hardware presents many challenges and the scientific community is actively searching effective solutions to address them. Several solutions can be found in literature. Most of these solutions are focused on localized tactile sensors (e.g. finder tips) in order to enhance robot capabilities in object manipulation and dexterity. These are the most common tactile devices exploited in robotics.

This project focuses, on the other hand, on the topic of delocalized medium/large scale sensing (e.g. artificial skin). Works on this topic can also be found but solutions are still in development due to its intrinsic complexity and technical challenges. Multiple sensing strategies, large area coverage, flexibility are a few examples of characteristics which increase maintenance issues and design constraints.

This project exploits elements of several disciplines that include but not limited to:

robotics, materials science, electronics, mechanics and biology.

The PhD student will address some of those limitations by investigating and developing a bioinspired structure capable of replicating in some extent skin features. This involves a multitude of mechanoreceptors, structure, density, decentralized sensing and decentralised sensory information integration processing.

The work will focus on several core tasks and skills:
• Biology inspired design
• Design and development of proof of concepts
• Prototyping
• Material investigation, characterization and test (e.g. soft materials)
• Decentralized modular design
• Data acquisition and processing

By its nature, this investigation favours a multidisciplinary background. However, this project provides scope and opportunity for building up a wide breadth of knowledge for students coming from any core discipline background.

Candidates are expected to have completed a Masters of Science degree (or equivalent) (First Class / Upper Second Class) in Robotics, Biomedical Engineering, Electronics, Mechanics, Mathematics, Physics or related areas. Candidates near to completion might be considered and, therefore, encouraged to apply. Any English language requirements must be met at the deadline for applications.

Informal enquiries should be directed to Dr Tareq Assaf ()

Formal applications should be made via the University of Bath’s online application form for a PhD in Electronic & Electrical Engineering. Please ensure that you state the full project title and lead supervisor name on the application form.

https://samis.bath.ac.uk/urd/sits.urd/run/siw_ipp_lgn.login?process=siw_ipp_app&code1=RDUEE-FP01&code2=0013

More information about applying for a PhD at Bath may be found here:

http://www.bath.ac.uk/guides/how-to-apply-for-doctoral-study/

Anticipated start date: 30 September 2019

Funding Notes

This project is eligible for inclusion in funding rounds scheduled for end of November 2018, January 2019, February 2019, March 2019 and April 2019. A full application must have been submitted before inclusion in a funding round.

Funding will cover Home/EU tuition fees, a maintenance stipend (£14,777 pa (2018/19 rate)) and a training support fee of £1,000 per annum for 3.5 years. Early application is strongly recommended.

How good is research at University of Bath in Electrical and Electronic Engineering, Metallurgy and Materials?

FTE Category A staff submitted: 20.50

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.