Imperial College London Featured PhD Programmes
University of Bristol Featured PhD Programmes
University of Reading Featured PhD Programmes

Biological physics of cell trafficking: Immune cell homing at the blood vessel wall


   Faculty of Engineering and Physical Sciences

   Applications accepted all year round  Competition Funded PhD Project (Students Worldwide)

Leeds United Kingdom Biophysics Biotechnology Nanotechnology Materials Science Physical Chemistry

About the Project

Cell trafficking is vital to all multicellular life and key in diseases such as cancer. In this PhD project, you will devise new methods to study how immune cells that circulate in the blood stream find and bind to sites of inflammation and how cancer cells hijack the system to metastasize. This is a formidable challenge that requires multiple disciplines – physics, biology and chemistry – to work hand in hand. A key factor in this process are specialised receptor molecules on the surface of the circulating cells that recognize a polysaccharide-rich coat lining the blood vessel walls. The mechanical properties of the receptors and the blood vessel coat are critical for proper adhesion under the shear stress of blood flow. Yet, what these are and how they control selective cell trafficking is not well understood. A key technique to probe the nanomechanics of individual molecular bonds along with the mechanical properties of tissues is atomic force microscopy (AFM). Laminar flow assays and optical microscopy, on the other hand, enable collective interactions to be probed. In a multidisciplinary environment, you will learn to create bottom up biosynthetic models of the circulating cell-blood vessel interface that enable well defined biophysical experiments using AFM and optical microscopy. The experimental work will be accompanied by theoretical work to aid the analysis of the experimental data and develop an understanding of the molecular and soft matter physics underpinning selective cell trafficking. In this project, you will put soft matter physics to the benefit of understanding biology. This will provide new insight into how cells trafficking is regulated, and ultimately help to devise new strategies to interfere with diseases such as cancer and chronic inflammation, and to design advanced biomaterials that guide cells for tissue repair. Suitable CANDIDATES would have a background in biophysics, soft matter physics, physical chemistry, biomedical engineering or a closely related field, and keen interest in multidisciplinary work. Experience in single molecule biophysics or advanced optical microscopy is an advantage.

Funding Notes

UK/EU - Alumni Bursary for graduates from the University of Leeds offering 10% discount on Academic Fees. 
International Students - China Scholarship Council-University of Leeds Scholarship award paying Academic Fees for 3 years;  Alumni Bursary for graduates from the University of Leeds offering 10% discount on Academic Fees.

Self-Funding Students are also welcome to apply.

Email Now


Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.