Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Bone-metal (brittle-elastic) bond durability and fatigue derived from coupled Acoustic Emission and X-ray Computed Tomography


   School of the Environment, Geography and Geosciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Philip Benson, Dr G Tozzi, Prof Gordon Blunn  Applications accepted all year round  Self-Funded PhD Students Only

About the Project

Applications are invited for a self-funded, 3 year full time PhD, to commence in October 2019 or February 2020.

The PhD will be based in the School of Earth and Environmental Sciences and will be supervised by Dr. Philip Benson, Dr. Gianluca Tozzi, and Prof. Gordon Blunn.


The work on this project will involve:
- Investigating a range of bonding options between brittle (e.g. rock/bone) and ductile (e.g. metal) objects.
- Linking 3D X-Ray Computed tomography of these, to an imposed cyclic stress regime.
- Using Acoustic Emission methods to remotely investigate the brittle-elastic link for wear and durability.

Project description

Recent advances in non-destructive testing such as in X-ray computed tomography (XCT) have yielded exciting new advances in material characterisation ranging from advanced composites to rocks and minerals, to biological tissues. A particular strength of the method is its ability to identify changes in material density, which are particularly obvious for voids or fracture in brittle materials (e.g. rock, bone, metals). However, although XCT is a very effective method for analyzing materials in the form of specimens, it is not portable and so is limited in terms of its in-situ use, or for monitoring wear. To derive both real-time and in-situ material fracture information, other methods are generally used such as Acoustic Emission (AE) monitoring, which is a high-frequency strain wave produced due to microfracturing. Unlike XCT, AE sensors are small enough to be embedded in samples and locate sources of damage, wear, and ultimately failure in a range of scenarios ranging from mechanical linkages to material bonding. To better understand the links between dynamic fracture and damage build-up in brittle materials, XCT data (which is high resolution but time consuming to generate) will be combined with 3D AE location routines using a small array of sensors (which is small and fast to collect, but has lower resolution). By using the XCT to calibrate AE signals (energy) in real-time, this project will develop new tools to monitor and asses fracture development in brittle media under controlled regimes of torque, stress, and tension. This will be performed using a unique XCT cell fitted with mechanical pistons and fitted with an embedded AE array to directly test one technique against another. Ultimately, this project will develop new monitoring techniques for prosthetics, testing the durability of bone-metal interfaces using smart AE systems embedded in the device for the purposes of avoiding fracture damage build-up due to over stressing the systems, improving designs and better monitoring performance.

General admissions criteria

You’ll need a good first degree in an applied science discipline from an internationally recognized university (minimum upper second class or equivalent, depending on your chosen course); an additional Master’s degree in a related area will be an advantage. In exceptional cases, we may consider equivalent professional experience and/or qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.

Specific candidate requirements

Applicants should:
• Hold or expect to hold an good first degree (2:1 or higher) and/or a MSc. in Applied Physics/Biophysics, Mechanical Engineering or a related discipline;
• Have a good working knowledge of numerical software such as excel and be familiar with basic numerical programming methods such as MatLab and Python;
• Have good social and team working skills.

In addition:
• A working background in laboratory rock mechanics testing – or practical mechanical/electronic engineering skills – are beneficial but not strictly required as training will be provided.

How to Apply
We’d strongly encourage you to contact Dr. Philip Benson ([Email Address Removed]) to discuss your interest before you apply, quoting the project code below.

When you are ready to apply, you can use our online application form and select ‘Geography, Earth and Environmental Sciences’ as the subject area. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV. Our ‘How to Apply’ page offers further guidance on the PhD application process.

When applying please quote project code: SEES4931019





Funding Notes

Self-funded PhD students only, or with sponsorship. Applicants who are considering external (non-UK/EU) sponsorship applications should contact the lead supervisor for advice and guidance.

PhD full-time courses are eligible for the UK Government Doctoral Loan (UK and EU students only).