University College London Featured PhD Programmes
University College London Featured PhD Programmes
University of Kent Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
The Hong Kong Polytechnic University Featured PhD Programmes

Characterisation of Ga2O3 materials for ultraviolet optoelectronic devices

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Funded PhD Project (European/UK Students Only)
    Funded PhD Project (European/UK Students Only)

Project Description

Wide bandgap semiconductors are the materials of choice for fabricating devices such as solar-blind detectors and ultraviolet (UV) light emitting diodes which are important enabling-technologies for water purification, biological and chemical sensing, flame detection, or communications. With a bandgap of 5 eV, gallium oxide (Ga2O3) is currently thought as one of the most promising materials for next generation UV optoelectronics and power electronics. In particular, the α phase of the compound (α-Ga2O3) offers unrivalled promises for tuning the operation wavelength of the device in the UV range – hence enabling the fabrication of devices for specific end-applications (e.g. to detect of a given pathogen in water). The α phase is however metastable, meaning that reliable synthesis of the material has for long been a challenge – which has been overcome recently. Consequently, little is known, at the experimental or theoretical level, about the mechanisms that lead to light emission/sensing in these materials. It is however vital to understand the inner mechanisms of the material in order to deliver efficient devices to nowadays challenges.

We are looking for a student to investigate the structural, chemical, and optical properties of α-Ga2O3 materials at the nanoscale. The project will build on the world-leading electron microscopy and spectroscopy capabilities of the Semiconductor Spectroscopy and Devices (SSD) group at the University of Strathclyde, which include electron probe micro-analysers (EPMAs) and low-vacuum scanning electron microscopes. The student will conduct characterisation using the following techniques: cathodoluminescence (CL), electron beam induced current (EBIC), electron channelling contrast imaging (ECCI), electron backscattered diffraction (EBSD), and energy/wavelength dispersive X-ray spectroscopy (EDX/WDX), as well as photoluminescence (PL). Throughout the project the student will also be exposed to other experimental techniques such as atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as theoretical modelling. We will work in close collaboration with the crystal growers (e.g. at the University of Liverpool) in order to build an in-depth understanding of how the growth affect the materials properties in order to deliver efficient devices for UV optoelectronics.
We are looking for a highly motivated, proactive individuals with keen interest in experimental physics and knowledge in the following areas: semiconductor materials and devices, semiconductor physics, characterisation techniques, and crystalline defect. Prior involvement to similar experimental activities is preferable.

To apply, send a cover letter, CV and a recent transcript via email at . More information about the group, its activities, and related publications can be found at http://good.phys.strath.ac.uk/ and http://ssd.phys.strath.ac.uk/.

Funding Notes

This studentship is 3.5 years, fully funded.
UKRI studentship eligibility criteria apply.

How good is research at University of Strathclyde in Physics?

FTE Category A staff submitted: 27.00

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.