Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Characterisation of molecular pathways of differentiation in normal human lympho-myeloid differentiation using a systems biology approach


   Radcliffe Department of Medicine

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof P Vyas, Prof Claus Nerlov  No more applications being accepted  Self-Funded PhD Students Only

About the Project

The human hemopoietic progenitor hierarchy producing lymphoid and granulocytic-monocytic (myeloid) lineages is unclear. Multiple progenitor populations produce lymphoid and myeloid cells, but remain incompletely characterized.

The Vyas lab has recently shown that the three human progenitor populations with lympho-myeloid potential - the lymphoid-primed multi-potential progenitor (LMPP), granulocyte-macrophage progenitor (GMP) and multi-lymphoid progenitor (MLP) are functionally and transcriptionally distinct and heterogeneous at the clonal level,[1]. Most combined lympho-myeloid and myeloid potential was captured within the LMPP and GMP. In terms of functional potential, uni-lineage myeloid or lymphoid potential, bi- and rarer multi-lineage progenitors occurred in LMPP, GMP and MLP This, coupled with single cell expression analyses, suggested a continuum of progenitors execute lymphoid and myeloid differentiation rather than only uni-lineage progenitors being present downstream of stem cells.

The focus of this project is to build on this work[1] and define the detailed molecular mechanisms that permit a lympho-myeloid LMPP to differentiate into a myeloid restricted progenitor, and for that myeloid progenitor to then complete differentiation. This is a critical set of questions not only for our understanding of normal progenitor cell biology, but has direct and important implications for Acute Myeloid Leukaemia (AML). We have previously shown that AML-propagating stem cells (AML LSCs) are partially arrested at the LMPP/GMP stage of differentiation([2] and unpublished data).

The project will combine state-of-the-art technologies in single cell RNA-Seq, single cell analysis of DNA methylation (in collaboration with the Ludwig Institute Oxford) and REAP-SEQ[3] and/or CITE-Seq[4] (WIMM collaboration). These complex datasets will be orthogonally interrogated and the student will require computational skills (ability to code) to achieve this. Training will be provided but prior background will be most helpful. Functional validation of transcriptional and signalling pathways required to execute this differentiation programme will require perturbation experiments based on Cas9-CRISPR modification of primary human haemopoietic cells, technology that is established in the laboratory.

TRAINING OPPORTUNITIES

The project: This project will provide a comprehensive training in state of the art single cell biology, human haemopoiesis (including flow sorting and functional assays), molecular biology and biochemistry including gene editing and computational biology.

The environment: The Vyas laboratory is based in the MRC Molecular Haematology Unit (MHU), Weatherall Institute of Molecular Medicine (WIMM) (www.imm.ox.ac.uk). There is a world-class single cell facility, a large computational biology core with a dedicated training core (CGAT), largest FACS facility in Europe, expertise in in vitro and in vivo functional analysis of blood cells at a single cell level.

Formal Training:

(a) 2-day WIMM Induction course.

(b) Weekly 2 hour, a year-long small group technique teaching sessions.

Informal Training

(a) Weekly meeting with Professor Vyas.


(b) Day-to-day supervision by senior post-doctoral fellows.


Presentation


(a) Formal data presentation to the weekly laboratory meeting.


(b) Presentation of published papers at the weekly journal club.

(c) The applicant will present at locally and at national/international meetings.

Academic activities


MHU and WIMM have separate weekly international/national speaker seminar series.

As well as the specific training detailed above, students will have access to a wide-range of seminars and training opportunities through the many research institutes and centres based in Oxford. Students are also able to attend the Methods and Techniques course run by the MRC Weatherall Institute of Molecular Medicine. This course runs through the year, ensuring that students have the opportunity to build a broad-based understanding of differing research techniques.

Generic skills training is offered through the Medical Sciences Division’s Skills Training Programme. This programme offers a comprehensive range of courses covering many important areas of researcher development: knowledge and intellectual abilities, personal effectiveness, research governance and organisation, and engagement, influence and impact. Students are actively encouraged to take advantage of the training opportunities available to them.

The department has a successful mentoring scheme, open to graduate students, which provides an additional possible channel for personal and professional development outside the regular supervisory framework. We hold an Athena SWAN Silver Award in recognition of our efforts to support the careers of female students and staff.

Funding Notes

Funding for this project is available to basic scientists through the RDM Scholars Programme, which offers funding to outstanding candidates from any country. Successful candidates will have all tuition and college fees paid and will receive a stipend of £18,000 per annum.

For October 2018 entry, the application deadline is 8th January 2018 at 12 noon (midday).

Please visit our website for more information on how to apply.

References

1. Karamitros, D., et al., Human lympho-myeloid progenitors are heterogeneous at the single cell level. Nature Immunology, 2017. In press.

2. Goardon, N., et al., Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell, 2011. 19(1): p. 138-52.

3. Peterson, V.M., et al., Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol, 2017. 35(10): p. 936-939.

4. Stoeckius, M., et al., Simultaneous epitope and transcriptome measurement in single cells. Nat Methods, 2017. 14(9): p. 865-868.

How good is research at University of Oxford in Clinical Medicine?


Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities