Postgrad LIVE! Study Fairs

Birmingham | Edinburgh | Liverpool | Sheffield | Southampton | Bristol

University of Bristol Featured PhD Programmes
University of St Andrews Featured PhD Programmes
University of Edinburgh Featured PhD Programmes
Imperial College London Featured PhD Programmes
Max Planck Society Featured PhD Programmes

Characterization of the mechano-biology and definition of a clinically relevant failure criterion for soft tissues

Project Description

Applications are invited for a fully-funded three year PhD to commence in October 2019.

The PhD will be based in the School of Mechanical and Design Engineering and will be supervised by Dr Martino Pani, Dr Andrea Bucchi and Professor Jan Shute.

The work on this project will be a joint collaboration between the CERL (Cardiovascular Engineering Research Laboratory) at the School of Mechanical and Design Engineering and the School of Pharmacy and Biomedical Sciences at the University of Portsmouth

Project description
A comprehensive understanding of the mechanical behavior of human soft tissues has a great clinical importance and can improve the medical treatment of a number of critical cardiovascular diseases such as the rupture of abdominal aortic aneurysm (AAA).

An aneurysm is a permanent and irreversible localized dilatation of blood vessels, usually in a saccular or fusiform shape. The AAA is ranked as the 15th most frequent cause of death in individuals aged over 60 and it is yearly responsible for 8000 fatalities only in the UK. A major cause for concern AAA is its asymptomatic development. If undetected an aneurysm continues to grow silently over the years until rupture. The rupture is an event that leads to death within hours in 65-85% of cases, in absence of any emergency surgery treatment.

The rupture and damage mechanisms in soft tissues are a poorly understood and barely investigated topic. This is the reason why most of the analysis and models, considering tissue failure, assume failure criteria derived from ‘classical’ materials such as metals. These theoretical models are generally informed by a planar biaxial extension where the tissue is held in place via the use of hooks. This established test has some intrinsic limitations: the material will always fail in the neighborhood of the hooks.

This failure is fictitious and it is not indicative of the tissue strength. To rectify this issue, we propose to use an inflation test, where the tissue is stretched under the action of a pressurized fluid (e.g. air or water), instigating the failure in a region, away from the boundaries. Our research group has realized a preliminary design of such device embedding a multi-camera stereo-vision to accurately capture the out of plane deformations.

The aim of the project is to refine the actual device, tailoring it to test different soft tissue (e.g. aortic valve, blood vessels, etc.) to permit a better characterization and understanding of soft tissue failure mechanisms. Second harmonic imaging microscopy will provide details regarding the tissue microstructure providing insights about the damaged areas. This will lead to a structurally based continuum mechanics model addressing tissue damage and failure mode. The project will be a joint collaboration between the CERL (Cardiovascular Engineering Research Laboratory) at the School of Mechanical and Design Engineering and the School of Pharmacy and Biomedical Sciences at the University of Portsmouth. External collaboration with local NHS Trust Hospitals will equip the research team with the possibility to perform tests on human tissue.

Entry Requirements

General admissions criteria
You’ll need a good first degree from an internationally recognised university (minimum second class
or equivalent, depending on your chosen course) or a Master’s degree in Mechanical Engineering or a related discipline. In exceptional cases, we may consider equivalent professional experience and/or Qualifications. English language proficiency at a minimum of IELTS band 6.5 with no component score below 6.0.

Specific candidate requirements
We’d welcome applications from candidates with a good background in continuum mechanics and familiar with some high-level programming language (e.g. Matlab/C/Python/…). You’ll be expected to be driven by intellectual curiosity, with a strong attitude to team working in multidisciplinary contexts, with a high level of independency and a strong commitment in affording complex problems characterized by considerable level of technicality.

How to Apply
We’d encourage you to contact Dr Martino Pani () or Dr Andrea Bucchi () to discuss your interest before you apply, quoting the project code.

When you are ready to apply, you can use our online application form and select ‘Mechanical and Design Engineering’ as the subject area. Make sure you submit a personal statement, proof of your degrees and grades, details of two referees, proof of your English language proficiency and an up-to-date CV. Our ‘How to Apply’ page offers further guidance on the PhD application process.

If you want to be considered for this funded PhD opportunity you must quote project code ENGN4640219 UK/EU students and ENGN4840219 International students when applying.

Funding Notes

Candidates applying for this project may be eligible to compete for one of a small number of bursaries available.

Successful applicants will receive a bursary to cover tuition fees for three years and a stipend in line with the RCUK rate (£14,777 for 2018/2019). International (non-EEA) applicants will also receive one return flight to London during the duration of the course through the Portsmouth Global PhD scholarship scheme.

Scholarship recipients will also receive a £1,500 p.a. for project costs/consumables.

Related Subjects

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2018
All rights reserved.