Birkbeck, University of London Featured PhD Programmes
The Francis Crick Institute Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
Norwich Research Park Featured PhD Programmes
European Molecular Biology Laboratory (Heidelberg) Featured PhD Programmes

Climates of the Caribbean: What are the drivers and impacts of ocean and climate variability for Caribbean Islands? (STEVENSUMTH20ARIES)

Project Description


The Caribbean Small Island Developing States face a variety of impacts from climate variability and climate change. The Caribbean Sea surface temperatures change from year to year due to both natural variability (for example associated with El Niño or the Atlantic Multidecadal Oscillation) and anthropogenically forced climate change. Anomalously warm years can lead to an early start to the rainfall season, coral bleaching and more hurricanes or more intense hurricanes. In cooler years the start of the rainfall season is delayed. Both flooding and drought are a risk. Damage to corals can impact biodiversity, fisheries, tourism, and weaken the defence they provide against stormy seas.


You will analyse observations of sea surface temperature, winds, rainfall and other key variables to determine the main patterns of climate variability that impact the Caribbean. You will assess how well these observed patterns are represented in a range of state-of-the-art climate models. You will use the model output to determine the key drivers of variability and determine any processes leading to model deficiencies. You will use model projections of future climate to understand how these patterns of climate variability might change.


You will join an active research group at UEA (which includes the Cefas Collaborative Centre for Sustainable use of the Seas) in meteorology, oceanography and climate. You will be trained in modelling the climate system and you will learn to use state-of-the-art computer systems to rigorously analyse large climate model datasets. You will have the opportunity to present your work at an international conference. There will also be an opportunity to undertake fieldwork to gain an appreciation of data collection and quality issues.


We seek an enthusiastic, pro-active student with strong scientific interests and self-motivation. The project is particularly suitable for a highly numerate student. Experience of a programming language will be advantageous. This project will suit an applicant intending to start a scientific career in meteorology, oceanography or climate science.

More information on the supervisor for this project:
Type of programme: PhD
Start date: October 2020
Mode of study: Full-time or part-time
Studentship length: 3.5 years
Partner: Cefas
Eligibility requirements: First degree in Physics, Maths, Meteorology, Oceanography or Environmental science

Funding Notes

This project has been shortlisted for funding by the ARIES NERC Doctoral Training Partnership, and will involve attendance at mandatory training events throughout the PhD.

Shortlisted applicants will be interviewed on 18/19 February 2020.

Successful candidates who meet UKRI’s eligibility criteria will be awarded a NERC studentship. UK and EU nationals who have been resident in the UK for 3 years are eligible for a full award.

Excellent applicants from quantitative disciplines with limited experience in environmental sciences may be considered for an additional 3-month stipend to take advanced-level courses in the subject area.

For further information, please visit View Website


Dye, S., P. Buckley, and J. Pinnegar (2017) Impacts of Climate Change on the Coastal and Marine Physical Environments of Caribbean Small Island Developing States (SIDS), Caribbean Marine Climate Change Report Card: Science Review 2017, 1-9.

Handoh, I.C., A.J. Matthews, G.R. Bigg, D.P Stevens (2006): Interannual Variability of the tropical Atlantic independent of and associated with ENSO: Part I. The north tropical Atlantic, International Journal of Climatology, 26, 1937-1956, doi:10.1002/joc.1343

Shaffrey, L.C., D. Hodson, J. Robson, D.P. Stevens, E. Hawkins, I. Polo, I. Stevens, R.T. Sutton, G. Lister, A. Iwi, D. Smith and A. Stephens (2017): Decadal Predictions with the HiGEM High Resolution Global Coupled Climate Model: Description and Basic Evaluation, Climate Dynamics, 48, 297-311, doi:10.1007/s00382-016-3075-x

Ryu, J.H. and K. Hayhoe (2015): Regional and large-scale influences on seasonal to interdecadal variability in Caribbean surface air temperature in CMIP5 simulations, Climate Dynamics, 45, 455-475,

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.