Postgrad LIVE! Study Fairs

Southampton | Bristol

University of Manchester Featured PhD Programmes
Imperial College London Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes

Computational Catalytic Modelling for the Conversion of CO2 to Higher-Value Synthetic Fuels

Project Description

This is a multidisciplinary project between the School of Engineering and the School of Chemistry.
The studentship is in partnership with SMMI,

The international maritime transportation sector accounts for more than 80% of world trade and shipping is predicted to increase in the future. Shipping contributes substantial emissions of toxic or harmful exhaust gas containing compounds, such as CO2, NOx, SOx, particulates, volatile organic compounds (VOCs) and carbon residues from diesel engines. Whilst emissions from road traffic and other land-based sources has been either decreasing or holding steady, emissions from shipping have been increasing steadily for decades. A recent Greenhouse Gas Strategy report by the International Maritime Organization (IMO) set an ambitious target of reducing 50% reduction of the current CO2 by 2050. This means we are entering a crucial transition whereby alternative fuels will play a more prominent role. However, this transition must begin immediately as ocean vessels have a long economic life so we need to look towards potential abundant feedstocks that would work with the current conversion processes to make them more effective and sustainable.

Upgrading CO2 into higher-value alcohols or synthetic fuel production is a viable option. Reactions utilising CO2 as a feedstock within a system that combines carbon-capturing species with hydrogen-activating nanoparticles for the direct conversion of CO2 to higher-value alcohols or synthetic fuels is an exciting and evolving field of research that holds great potential.

This is a multi-disciplinary project based between engineering and chemistry. This project will involve a combination of experimental chemical investigations as well as the development of a catalytic modelling approaches which can capture the CO2 conversion process for a range of operating conditions, typical to the marine emission concentrations, to yield high-value synthetic fuels. The insight gained from this project will afford wider scope for optimisation the derivation of CO2-based fuels from biomass sources to further reduce CO2 emissions.

If you wish to discuss any details of the project informally, please contact Dr Lindsay-Marie Armstrong, Energy Technology Research Group, Email: , Tel: +44 (0) 2380 59 4760.

How to Apply

Click the link to apply online and select the programme - PhD in Engineering and the Environment. Please enter the title of the PhD Studentship in the application form.

How good is research at University of Southampton in General Engineering?

FTE Category A staff submitted: 192.23

Research output data provided by the Research Excellence Framework (REF)

Click here to see the results for all UK universities

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2019
All rights reserved.