Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Control mechanisms of IDO1 in cancer cells


   Molecular and Cell Biology

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Hanna Kwon, Prof Andrew Hudson  No more applications being accepted  Funded PhD Project (Students Worldwide)

About the Project

Indoleamine 2,3-dioxygenase 1(IDO1) is a heme-containing enzyme involved in the degradation of tryptophan to kynurenine. Cancer cells upregulate IDO1 to escape normal immune response and, in many cases, a high expression of IDO1 is connected to poor prognosis. This makes IDO1 an attractive drug target, however, this project will be concerned with addressing a fundamental question concerning how the activity of IDO1 could be modulated in both healthy and diseased tissue.      

Heme is a versatile small molecule that is pivotal to the functionality of a large number of heme proteins; for example, it is responsible for binding oxygen in the globins, and facilitating charge transfer process in the cytochromes. Heme is also pivotal to the enzymatic activity of IDO1. A number of studies have shown1, 2 that IDO1 is predominantly expressed in an inactive, heme-free, form in cells. Because the catalytic activity of IDO1 depends on the presence of heme, it is important to understand the cellular processes that control the availability of heme for binding to IDO1 and hence the activity of this enzyme for conversion of tryptophan to kynurenine.  

This project will seek to understand how heme availability changes in cancer, or adjusts to the increasing demand for heme in disease conditions that resulting in higher expression levels of IDO1. We will also investigate exactly how heme is delivered to IDO1; for example, are specific chaperone proteins necessary for the insertion of heme into the protein? We will attempt to answer these questions in this project using structural (cryoEM and X-ray crystallography), physical (spectroscopy and microscopy) methods and computational analysis. A PhD student will gain a broad range of interdisciplinary skills in structural biology, chemical biology and biophysics in order to address an important question in cancer biology.   

Techniques that will be undertaken during the project

  1. Molecular Biology (cloning & mutagenesis) 
  2. Protein expression and purification (bacterial and mammalian) 
  3. Enzyme kinetics 
  4. Confocal and fluorescent microscopy 
  5. Protein crystallisation  
  6. Structure determination (X-ray crystallography & cryo-EM) 

BBSRC Strategic Research Priority: Understanding the Rules of Life - Structural Biology

 

 Start date: 25 September 2023

Entry requirements

  • Those who have a 1st or a 2.1 undergraduate degree in a relevant field are eligible.
  • Evidence of quantitative training is required. For example, AS or A level Maths, IB Standard or Higher Maths, or university level maths/statistics course.
  • Those who have a 2.2 and an additional Masters degree in a relevant field may be eligible.
  • Those who have a 2.2 and at least three years post-graduate experience in a relevant field may be eligible.
  • Those with degrees abroad (perhaps as well as postgraduate experience) may be eligible if their qualifications are deemed equivalent to any of the above.
  • University English language requirements apply

To apply

Carefully read the application advice on our website and submit your PhD application and MIBTP funding form 

https://le.ac.uk/study/research-degrees/funded-opportunities/bbsrc-mibtp

Biological Sciences (4)

Funding Notes

All MIBTP students will be provided with a 4 years studentship.
Studentships include:
• Tuition fees at the UK fee rate*
• a tax free stipend which for 2022/3 was £17,668 (2023/24 stipend to be confirmed)
• a travel allowance in year 1
• a travel/conference budget
• a generous consumables budget
• use of a laptop for the duration of the programme.
* International students are welcome to apply but applicants must be able to fund the difference between UK and International fees for the duration of their studies.

References

1. M. T. Nelp et al. (2018), Proceedings of the National Academy of Sciences 115, 3249-3254.
2. S. R. Thomas et al. (2001), The Journal of Immunology 166, 6332-6340.