European Molecular Biology Laboratory (Heidelberg) Featured PhD Programmes
University of Edinburgh Featured PhD Programmes
King’s College London Featured PhD Programmes

Control Strategies of Power Optimization for Smart Buildings

  • Full or part time
  • Application Deadline
    Applications accepted all year round
  • Self-Funded PhD Students Only
    Self-Funded PhD Students Only

Project Description

Buildings are taking 40% of the world energy to generate comfort and healthy environment to the inmates. However, upgrading buildings to address their energy efficiency using cutting edge technology is prime important. The UK’s buildings are responsible for 40% of carbon emission. The building integrated photovoltaics (BIPV) are getting importance due to its advantages over the conventional solar systems. BIPV is likely to become an increasingly popular due to its materials saving with energy embeddedness, produce electricity at point of contact, improved thermal insulations, aesthetically pleasing features of the buildings and provide sufficient energy for the building usage. Concentrator photovoltaic (CPV) systems are an expanding research topic with various applications and benefits. At present, most domestic photovoltaic (PV) technology is attached on top of roofs and facades as opposed to building integrated. CPV are an option for expanding the flexibility and variety of integrated PV design as well as achieving higher energy conversion efficiencies. Apart from Si solar cells, thin film CdTe cells are another alternative which allow flexibility in cell shape and size as well as very scalable productions. Here we present a low concentration photovoltaic for applications as a window where some light passes through for indoor daylighting and some is concentrated to a silicon or CdTe solar cell for electricity generation (figure 1). One restraint for renewable energy is the intermittency of the power supply, hence a power control unit will be designed to manage the power output and performance. With building integrated photovoltaic technology, the fixed position of the technology is a limitation. PC-Rig is hence to truly optimise building integrated solar window would automatically open the window for optimum solar orientation and gain. Such a control set up would allow for overrides in the case of high winds, rain and to be closed to optimise instead the use of heating or AC within the building.

The Materials and Engineering Research Institute (MERI) is a dynamic interdisciplinary research institute dedicated to addressing industrial problems through the application of fundamental science and engineering. For information about MERI please visit

Application deadline: applicants accepted all year round with enrolments during September, February (January on website) and May

Duration: 4 years full time, 7 years part time.

Funding Notes

Funding Status: there is no funding attached to this project. The applicant will need to fund their own tuition fees, research costs and living expenses.

For information about how to apply, entry requirements, tuition fees and other costs please visit View Website

Related Subjects

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

FindAPhD. Copyright 2005-2020
All rights reserved.