Postgrad LIVE! Study Fairs

Southampton | Bristol

Nottingham Trent University Featured PhD Programmes
Imperial College London Featured PhD Programmes
FindA University Ltd Featured PhD Programmes
Engineering and Physical Sciences Research Council Featured PhD Programmes
Birkbeck, University of London Featured PhD Programmes

Creating biocompatible conducting nanowires


About This PhD Project

Project Description

This project aims to functionalise β-peptides with organic conductors to create novel biocompatible conducting nanowires.

Organic bioelectronics studies the development of devices that translate an electrical signal into a physiological response from cells, tissues or organs. Almost all work in the field of organic bioelectronics has used organic polymers and conjugated aromatic molecules where π-orbitals within the molecules are delocalized, giving rise to electronic mobility both along the chain and between adjacent chains through interaction between their π-orbitals. Adding or removing electrons to these material systems usually results in high electronic conductivity. However, although there have been numerous studies to increase the biocompatibility and stability of such materials, there are issues surrounding the toxicity and biological integration of these systems. A potential alternative is to use a peptide-assembled system.
The vast majority of peptides are insulating by nature and require significant design and synthetic strategies to introduce any bioelectronic activity. Therefore, the aim of this project is to generate conducting peptide hydrogels that are biocompatible and able to distribute an electrical signal to cells. In order to achieve this, a conducting polymer will be used to decorate β-peptide fibres. Typically, organic conducting polymers are usually insoluble in aqueous systems, however, incorporation of a self-assembly motif into the organic monomer prior to polymerization causes the compound to be soluble in water without perturbing conductivity. Therefore, utilizing modified polymers and our peptide scaffolds, we envisage the assembly of hybrid fibres that are conductive and still allow for the incorporation of bioactive signals. We believe this project will lead to the creation of bioelectronic gels and fibres.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully





FindAPhD. Copyright 2005-2019
All rights reserved.