Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Cryo-electron microscopy of plant clathrin cages


   School of Life Sciences

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Prof Corinne Smith, Prof Richard Napier  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

Endocytosis via clathrin coated vesicles is a process fundamental to eukaryotic cell health and vitality, and the core proteins as well as the beautiful geometry of clathrin cages are highly conserved. The Smith group has used world-leading cryo-electron microscopy and structural biology to publish the highest resolution images of clathrin coated vesicles (CCVs) and their constituent proteins to date. In this project you will extend this work on animal CCVs to the plant kingdom, allowing you to compare and contrast the small structural details which have evolved to deliver the same cell biology in very different contexts.

In cryo-electron microscopy, the superior signal sensitivity of new direct electron detectors has revolutionised the field of structure determination allowing sub-4Å structures of challenging targets. We are exploiting this improvement in capability to carry out high resolution structural analysis of clathrin cage complexes (Morris et al., 2019)

Clathrin-mediated endocytosis is a fascinating mechanical phenomenon that drives the selective internalisation of molecules into cells. In order to work properly, clathrin-mediated endocytosis requires accurate and timely assembly of a clathrin lattice. The cage complexes imaged so far have been from animals. The core proteins are highly conserved, and yet endocytosis in animals works in isotonic conditions whereas plant cells are under high turgor pressure. You will purify and examine in detail the structure of plant cages using high resolution 3D cryo-electron microscopy. You will visualise adaptor proteins binding to clathrin cages and use biophysical approaches such as dynamic light scattering, time-resolved fluorescence anisotropy and surface plasmon resonance (SPR, Biacore). This is a fabulous opportunity to apply cutting edge techniques to discover how clathrin and its adaptor proteins have evolved to drive clathrin mediated endocytosis in very different environments.

BBSRC Strategic Research Priority: Understanding the Rules of Life: Plant Science & Structural Biology. Sustainable Agriculture and Food: Plant and Crop Science.

Techniques that will be undertaken during the project:

  • Protein expression and purification
  • High resolution electron microscopy
  • Image analysis of large data sets
  • Structural biology
  • Kinetic analysis using light scattering, fluorescence and single molecule methods.

Contact: Dr Corinne Smith, University of Warwick


Biological Sciences (4)

References

Morris KL, Jones JR, Halebian H, Wu S, Baker M, Armache J, Ibarra AA, Sessions RB, Cameron AD, Cheng Y, Smith CJ. Cryo-EM of multiple cage architectures reveals a universal mode of clathrin self assembly. Nature Structural and Molecular Biology (2019) 26(10):890-898. doi: 10.1038/s41594-019-0292-0.
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.

 About the Project