Looking to list your PhD opportunities? Log in here.
About the Project
Particle processing is widely used in chemical and pharmaceutical manufacturing industries. In this context, particle attributes influence processability and are key to the optimisation of product quality. However, despite the high material costs involved, significant process inefficiencies are still common in these sectors. New technologies that improve the monitoring of particle attributes are essential to transform the ability to understand and control pharmaceutical processes and to achieve the reliability and stable operation of other sectors such as aerospace and automotive.
Currently, particle attributes are mainly characterised using off-line techniques that are prone to particle alteration during sampling, transport and analysis. In-line measurements are quickly developing as a fast alternative to overcome these limitations and have the potential to provide a more representative view of the particle population in-situ. However, unsolved challenges still remain in the extraction of quantitative particle attributes due to the complex in-line measurement environment.
The project will use a combination of experiments, data analytics and simulation to provide more accurate representation of particle attributes from in-line measurements. Data will be captured using state-of-the-art Process Analytical Technologies (PAT) available at the Centre for Continuous Manufacturing and Crystallisation (CMAC), including Particle View Microscopy (PVM), Focused-Beam Reflectance Measurement (FBRM) and Raman spectroscopy. These data streams will inform the development of Machine Learning and Deep Learning models to extract more representative particle size, shape and morphology distributions, as well as solution solid loading. Simulations of the measurement environment will contribute to identifying deviations from ideal scenarios and to providing physical meaning to these anomalies. While extracting information from individual sensors is a challenge in itself, the project will aim to implement data fusion approaches to further enhance in-line quantification of particle attributes and inform more advanced process control strategies.
This project will be based in the Departments of Electronic & Electrical Engineering and Chemical & Process Engineering. The proposed start date is October 2023.
In addition to undertaking cutting edge research, students are also registered for the Postgraduate Certificate in Researcher Development (PGCert), which is a supplementary qualification that develops a student’s skills, networks and career prospects.
Funding Notes
Students applying should have (or expect to achieve) a minimum 2.1 undergraduate degree in a relevant engineering/science/education/humanities discipline, and be very motivated to undertake highly multidisciplinary research.
Email Now
Why not add a message here
The information you submit to University of Strathclyde will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Glasgow, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Data driven approaches for nonlinear inverse problems
University of Birmingham
An Exploration of Data-driven Analytics and Digital Twins for Sustainable Manufacturing in Industry 4.0
University of Exeter
Exploring Parkinson’s disease subtypes using data driven approaches applied to prospective cohorts
University of Bristol