Coventry University Featured PhD Programmes
University of Leeds Featured PhD Programmes
Cardiff University Featured PhD Programmes

Data Driven Approaches for Machine Learning in Wireless Communications


School of Engineering

About the Project

Fifth Generation (5G) wireless networks are starting to be deployed around the world, in order to provide higher capacity and more energy efficient communications in the future. These standards exploit large scale antenna arrays to perform very directional beamforming between base stations and mobile users. At the same time, machine learning methods are enabling a revolution in data processing that can provide solutions to many problems that were previously thought to be too complex to solve. These approaches can identify complex interactions between different parts of the available data during a training phase, which can then be exploited in practical operation.

Among wireless communications researchers, there is a strong desire to apply machine learning to improve the performance of future networks. Firstly, it is very important to identify problems where these methods can give system designers an advantage over traditional signal processing algorithms. There is a second major challenge, which is to develop new methods that can achieve enhanced performance but without excessive implementation complexity. This requirement is particularly true for mobile handsets, whose performance is limited by the battery that powers it.

The goal of this research project is to study how machine learning can improve the physical transmission and reception of data in a wide range of radio environments. Current wireless standards, such as 5G communications, embed known waveforms in the data to enable the receiver to determine the radio channel. This task enables the receiver to recover transmitted data efficiently, but it becomes challenging in the presence of co-channel interference from nearby transmitters operating on the same frequency. This project will investigate machine learning approaches to this problem and will focus on how such networks can learn from realistic datasets of communication signals. The PhD research will focus initially on three main aspects: dataset construction; evaluation of methods to identify the current scenario under which the receiver is operating and thirdly a detailed performance evaluation of these approaches.

Applicants should have an undergraduate degree in Electronic and Electrical Engineering, Computer Science or related subjects.

To Apply: https://www.eng.ed.ac.uk/studying/postgraduate/research/phd/data-driven-approaches-machine-learning-wireless-communications

Funding Notes

Applications are welcomed from self-funded students, or students who are applying for scholarships from the University of Edinburgh or elsewhere.

We are currently arranging 50% funding of the PhD project with an industrial sponsor. If the project proceeds well, the company will extend the funding to a full PhD studentship.

Email Now

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here

The information you submit to University of Edinburgh will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.

* required field

Your enquiry has been emailed successfully



Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.



FindAPhD. Copyright 2005-2020
All rights reserved.