Data-driven measuring, modelling and predicting space weather hazard


   Faculty of Environment

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr P Livermore  No more applications being accepted  Competition Funded PhD Project (Students Worldwide)

About the Project

Overview

This data-driven project will measure, model and predict the South Atlantic Anomaly, a weak spot in Earth’s magnetic field. The project will be based on data from European and Chinese satellites, and will use techniques including machine learning to analyse the near space environment and the dynamics of Earth’s liquid core. 

Background 

The geomagnetic field is a fundamental component of Earth. Wrapping around our planet like an invisible force-field, it protects life from harmful solar radiation and influences the impacts of space weather on modern technologies, such as satellites and electrical power grids. Yet similar to the ozone hole in the atmosphere, there is a weak-spot in this shield, termed the south Atlantic anomaly (SAA). The Earth’s magnetic field is dynamic and changes on yearly to decadal timescales, but unlike the ozone hole the SAA is currently growing. Satellites that fly through this region of weakened field experience electronic upsets. From 1999 satellites have continuously measured the Earth’s geomagnetic field, the most recent of which is the Macau satellite mission MSS-1, launched in early 2023. These space missions, alongside both recent and historical ground-based measurements, will allow the student to construct data-driven models of the SAA and its space weather implications. 

Objectives 

1. To map the SAA both in terms of magnetic field strength, observations of energetic particles (e.g. those causing the electronic upsets) and simple models of the positioning of the Earth’s radiation belts which transport these charged particles. 

2. To use data-driven machine learning, such as physics informed neural networks, to create new models of the Earth’s liquid core, specific to equatorial regions, and consistent with geomagnetic observations. These will complement other global models of the flow, and provide new insight into how and why the SAA arises, and how it may change in the future. 

3. To assess the space weather hazard of current and future changes in the SAA, for example, by investigating the future geometry of the radiation belts and their impact on spacecraft. 

Requirements 

We seek a highly motivated candidate with a strong background in mathematics, physics, computation, geophysics or another highly numerate discipline. Knowledge of geomagnetism is not required. 

Training 

The student will be trained in geomagnetic analysis of measurements from satellites and will take relevant undergraduate or masters level courses. They will also have access to a broad spectrum of training workshops at Leeds that include techniques in numerical modelling, through to managing your degree and preparing for your viva. The student will undertake an extended visit to the British Geological Survey during their studies, and benefit from the strong portfolio of international collaborators of the supervisors, which includes the Macau-mission scientists. There will also be opportunities to attend conferences and collaborative visits both within Europe and internationally. 

Environmental Sciences (13) Geography (17)

Funding Notes

There are two funded places (one home and one international) across all projects advertised in the EPSRC DTP. This means that not all projects will be recruited to- only two candidates will be successful and are selected on the basis of merit.

The award will cover the full fees (home or international) plus an annual maintenance stipend matching UKRI standard (£18,622 in 2023/24).

Where will I study?

Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.