Looking to list your PhD opportunities? Log in here.
About the Project
Reference number: SCEBE/21S/016/IK
Aim and Scope
Smart grids refer to electricity networks that enable a two-way flow of electricity and data with digital communication links to help detect, react and pro-act to changes in demand and other issues. The transition from traditional power grids to smart grids is driven by several factors including the deregulation of energy markets, rise of micro-electricity generation and microgrids, renewable energy mandates and rising purposes for which electricity is required e.g. charging points for electric vehicles. Smart grids are recognized as one of the key technologies to implement future low carbon and sustainable energy systems which is key in the drive to create sustainable cities and communities.
With recent advances in battery technology, widespread installation of battery storage in residential buildings to complement rooftop photovoltaic cells is expected to occur over the next decade. This deployment presents several challenges to existing electricity networks such as the possibility of large demand-supply swings in power if battery charging and discharging is poorly scheduled. Thus, in the perspective of a grid operator, the main aim is to minimize the fluctuations in power demand which is generally achieve via peak shaving.
Despite the intense research efforts that have been put into optimal scheduling of batteries storage at the residential level in order to minimize energy supply and demand fluctuations, several challenges in terms of smart grids control still abound in this area. With respect to existing challenges, this PhD research aims to address the following: (i) investigation of suitable prediction method for net energy consumption since most researchers assume that this is available to them. (ii) design of data-driven optimal control algorithm that offers higher reliability, minimum communication link requirement in the network and peak shaving. An important consideration should be the scalability of the method since energy sources enter or leave the network over time (iii) investigation of methods to improve the controller’s robustness to measurement noise since the method do not require a model of the dynamic system (iv) interpreting the grid operator’s goal - minimising variations in the power demand - as a minimisation of electricity cost so as to investigate the benefit of the peak shaving to individual residential energy systems.
- Candidates are requested to submit a more detailed proposal (of a maximum of 2000 words) on the project area as part of the application.
- highlight your membership of a particular research community or research group with url.
Preferred experience:
(i) Bachelor’s (UK 2:1 or better) or Master’s degree (Merit or Distinction) with major/specialization in Electrical and Electronics, Mechatronics, Systems and Controls or any other relevant engineering/science discipline.
(ii) Very good programming skills.
(iii) Excellent background in control systems and engineering is desired.
(iv) Previous publication is preferred but not required.
(v) Previous experience with microgrids operation is desirable.
-Indicative range of Bench Fees tied to the project
How to Apply
This project is available as a 3 years full-time or 6 years part-time PhD study programme.
Candidates are encouraged to contact the research supervisors for the project before applying.
Please note that emails to the supervisory team or enquires submitted via this project advert do not constitute formal applications; applicants should apply using our Application Process page, choosing Engineering and their preferred intake date.
Please send any other enquires regarding your application to: researchapplications@gcu.ac.uk
Funding Notes
See more on fees and funding. View Website
References
Director of Studies
Name: Ibrahim Kucukdemiral
Email: Ibrahim.kucukdemiral@gcu.ac.uk
GCU Research Online URL:
https://researchonline.gcu.ac.uk/en/persons/ibrahim-küçükdemiral
2nd Supervisor
Name: Geraint Bevan
Email: Geraint.Bevan@gcu.ac.uk
GCU Research Online URL:
https://researchonline.gcu.ac.uk/en/persons/geraint-bevan
3rd Supervisor
Name: Dong.Chen
Email: Dong.Chen@gcu.ac.uk
GCU Research Online URL:
https://researchonline.gcu.ac.uk/en/persons/dong-chen
Email Now
Why not add a message here
The information you submit to Glasgow Caledonian University will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Glasgow, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Development of a Data-Driven Design Methodology for Smart Products
Edinburgh Napier University
Human-centric, data-driven model predictive control strategies for buildings
University of Reading
Advancing Multi-Agent Approaches to Intelligent Smart Grid Control
University of Strathclyde