Meet over 65 universities on 27 & 28 April GET YOUR FREE TICKET >
University of Portsmouth Featured PhD Programmes
Anglia Ruskin University ARU Featured PhD Programmes

Decoding movement kinematics from subpopulations of motor cortex neurons

Department of Neuroscience, Psychology and Behaviour

This project is no longer listed on and may not be available.

Click here to search for PhD studentship opportunities
Dr T V Gerdjikov , Dr J Liu No more applications being accepted Competition Funded PhD Project (European/UK Students Only)

About the Project

Background: Fine motor control involves the ability to reach, grasp and release objects. It is a fundamental aspect of motor behaviour essential for feeding, self-care and the manipulation of tools. Fine motor control is impaired in a number of neurological conditions and an understanding of the underlying neuronal mechanisms in the intact brain can help advance our knowledge of these conditions. Further, computational approaches are used to decode movement parameters from neural signals in an attempt to explain how this structure may control movement generation (e.g., Xing et al., 2019). In rat motor cortex, electrophysiological studies show a broadly somatotopic representation of different body parts (the ‘motor ratunculus’ in parallel to the human ‘motor homunculus’) with clear rich representations of the forepaw region (e.g. Galinanes et al., 2018). We currently do not have a good understanding of how fine forepaw movements are represented at the level of motor cortex. There is clear evidence that experimental lesions of this structure affect movement and that fine motor skill learning affects cortical plasticity. Surprisingly however, little further progress has been made to understand how specific movement parameters are encoded in this structure and its downstream targets. This gap in our knowledge is significant: our lack of basic understanding of how motor cortex and related circuitry encode fine movements is a profound disadvantage when examining the brain mechanisms of natural movements. To understand the relationship between movement parameters (speed, trajectory, etc.) and motor cortex activity, we have previously recorded the activity of motor cortex single neurons in rats performing a motor task (Gerdjikov et al., 2013). This work uncovered a surprising set of motor cortex neurons whose activity shows a weak relationship to movement parameters and instead appears related to movement monitoring. This work parallels primate recordings, which also show a variety of motor cortex responses to fine movements.

Objectives: The purpose of the current project is to investigate novel approaches for decoding movement parameters from neural data acquired from morphologically distinct motor cortex neurons. Using computational approaches we will investigate the relationship between forelimb movement kinetics and neural activity in subpopulations of output-defined motor cortex neurons.

Methods: Firstly, we will link activity in discrete output-defined M1 neuronal populations to movement parameters in rats trained in a skilled reaching task. This aspect of the work will rely on modern viral approaches to separately tag neurons belonging to different projections and record their activity in behaving rats using fibre photometry and/or extracellular neurophysiology. Computational approaches such as machine learning and neural network modelling will be used to decode kinematics derived from movement data.

A second aspect of the work will involve causal experiments where we will use optogenetics to selectively ‘turn off’ the activity of discrete projections. We will investigate how these manipulations affect fine motor control in behaving rats to causally tease apart the contribution of each projection to motor control.

UK/EU applicants only.

Entry requirements:
Applicants are required to hold/or expect to obtain a UK Bachelor Degree 2:1 or better in a relevant subject.
The University of Leicester English language requirements apply where applicable:

How to apply:
To apply for the PhD please refer to the guidelines and use the application link at
Please also submit your MIBTP notification form at

Project / Funding Enquiries: [Email Address Removed]
Application enquiries to [Email Address Removed]

Funding Notes

4 year fully funded BBSRC MIBTP studentship
UK/EU fees and stipend at UKRI rates. For 2020 this will be £15,285 pa


1. Galinanes GL, Bonardi C, & Huber D (2018). Directional reaching for water as a cortex-dependent behavioral framework for mice. Cell reports, 22(10), 2767-2783.

2. Gerdjikov TV, Haiss F, Rodriguez-Sierra O, Schwarz C (2013). Rhythmic whisking area (RW) in rat primary motor cortex: an internal monitor of movement-related signals? Journal of Neuroscience. 33:14193-204.

3. Xing, D., Aghagolzadeh, M., Truccolo, W., & Borton, D. (2019). Low-Dimensional Motor Cortex Dynamics Preserve Kinematics Information During Unconstrained Locomotion in Nonhuman Primates. Frontiers in neuroscience, 13.
Search Suggestions

Search Suggestions

Based on your current searches we recommend the following search filters.

FindAPhD. Copyright 2005-2021
All rights reserved.