Don't miss our weekly PhD newsletter | Sign up now Don't miss our weekly PhD newsletter | Sign up now

  Defining B cell gene signatures associated with higher affinity antibodies


   London Interdisciplinary Biosciences Consortium (LIDo)

This project is no longer listed on FindAPhD.com and may not be available.

Click here to search FindAPhD.com for PhD studentship opportunities
  Dr Laura McCoy  No more applications being accepted  Funded PhD Project (Students Worldwide)

About the Project

This project will use well-established wet lab techniques but require the development of bespoke scripts and computational analysis pipelines and would suit a student with prior experience or a clear aptitude for bioinformatics. Next generation sequencing technologies, particularly the 10X system enable high throughput analysis of both antibody sequence and B cell phenotype. This project will leverage these techniques address the following questions using a transgenic mouse model:

  1. Do greater serological responses relate to differential anatomic distribution of antigen-specific cells?
  2. Are B cell repertoires with greater affinity maturation associated with distinct antigen-specific B cell phenotypes?
  3. Do different antigens induce shared antigen-specific B cell phenotypes across B cell populations with increased affinity maturation?

Background:

Since the discovery of monoclonal antibodies (mAbs) in the 1970s they have rapidly become one of the leading precision biotechnology tools, with applications as far reaching as control of infectious diseases such as COVID19 to industrial processes for cosmetics. However, challenging target antigens continue to pose a major obstacle for biotechnologists and there remain many unanswered basic biological questions about how antibodies are generated and how this process can be manipulated. In part this is because there remain many unanswered fundamental questions about how antibodies are generated and how this process can be manipulated for improved immunological outcomes and development of higher affinity recombinant antibody tools. It is well-established that antibodies are produced when B cells encounter their cognate antigen and become activated. Following this, the B cell can progress through distinct differentiation states (plasmablast, memory B cell, plasma cell) and produce antibody into the blood to protect from infection. Immunological dogma suggests these changes in cellular phenotype are linked to the affinity of the B cell receptor for antigen but the precise mechanisms and decision points remain unclear. This process is essential to the development of mAbs, particularly as those against challenging targets rely on both high levels of affinity maturation and appropriate anatomical locations of B cells and antibodies. Thus, it is crucial to investigate the control mechanisms of antibody development which determine how B cell fate and homing link to the quality of the antibodies produced. This project will address this challenge specifically by addressing the three questions above to test the Hypothesis: The phenotype of antigen-specific B cells is distinct at a transcriptomic level and varies with the degree of affinity maturation.

Main objectives of the project:

These are outlined below as milestones, while (i) and (ii) are envisioned to be complete within the first year, some of the remaining milestones will continue throughout the project from the second year onwards as an iterative process.

Year 1 (at UCL/GSK): (i) Development and verification of immunogens at UCL. (ii) Immunisations: groups of 10 mice will receive distinct complex model antigens (e.g. HIV envelope and SARS-CoV-2 spike) each group receiving multiple adjuvanted immunogen doses at GSK

Year 2 (at GSK): (iii) Serological evaluation of binding strength (SPR), breadth (ELISA) at GSK. (iv)Antigen-specific FACS to isolate immunogen-specific B cells for transcriptomic and B Cell Repertoire analysis using 10X technology and NGS at GSK

Year 3 & 4 (at UCL): (v) Repertoire analysis to evaluate affinity maturation and clonal diversity.

(vi) Transcriptomic analysis to identify phenotypic modules associated to higher affinity maturation and clonal diversity.

The PhD student will work at both UCL and GSK. The McCoy lab is based in the UCL Institute of Immunity and Transplantation (IIT) within the UCL Division of Infection and Immunity is based in the Pears Building at the Royal Free Hospital site https://www.ucl.ac.uk/immunity-transplantation/. The IIT hosts research groups with diverse interests that will provide a supportive and stimulating environment, and has a dedicated bioinformatics space. While at the GSK Stevenage site, the student will be part of the Molecular Discovery Department at GSK (BPMD) who have state of the art equipment across all parts of the mAb discovery process and a strong track record in supervision and have hosted multiple CASE students


Biological Sciences (4)

Funding Notes

Fully funded place including home (UK) tuition fees and a tax-free stipend in the region of £19,668. Additional funding to cover full overseas fees is available for a maximum of 11 studentships.

References

King et al, Sci Immunol. 2021 Feb 12;6(56):eabe6291. DOI: 10.1126/sciimmunol.abe6291.
Mesin L et al. Immunity. 2016 Sep 20;45(3):471-482. DOI: 10.1016/j.immuni.2016.09.001.
Nogal et al., Sci Advances. 2020 Jun 5;6(23):eaba0512. DOI: 10.1126/sciadv.aba0512
Ng et al., Science Vol 370, Issue 6522, pp. 1339-1343. DOI: 10.1126/science.abe1107
Rosa et al., Science Advances, 28 May 2021, Vol 7, Issue 22, DOI: 10.1126/sciadv.abg760
Search Suggestions
Search suggestions

Based on your current searches we recommend the following search filters.