Looking to list your PhD opportunities? Log in here.
This project is no longer listed on FindAPhD.com and may not be available.
Click here to search FindAPhD.com for PhD studentship opportunitiesAbout the Project
The mechanisms driving sarcopenia remain poorly understood, however a key risk factor is known to be low physical activity. Among older adults, the reduction in muscle function is much more marked than would be predicted by the loss of muscle mass, suggesting there is likely a neuromuscular component contributing to the loss of strength and power that accompanies ageing and unloading. Preliminary data from our labs has demonstrated significant skeletal muscle dysfunction in young adults, following a step count reduction model. We propose that implementing this model with older adults will be a major step in revealing the mechanistic drivers of sarcopenia, for which novel and effective countermeasures and interventions can then be developed.
The overarching research aim is to determine the key metabolic and neuromuscular response of younger and older adults to reduced physical activity, and to subsequent re-training and recovery.
Key techniques that will be used within this research are: functional assessments, muscle quality assessment, incorporating isometric force measurement and muscle mass determination (B-mode ultrasound and DXA); muscle tone (tensiomyography); voluntary activation and excitation (peripheral nerve stimulation and surface electromyography); motor unit firing rates, number and size (intramuscular electromyography).
Funding Notes
To be eligible for this studentship, you should have a 1st or 2:1 degree in a Health/Sport Science related subject.
References
Brooks NE, Cadena SM, Cloutier G, Vega Lopez S, Roubenoff R, Castaneda Sceppa C Influence of exercise on the metabolic profile caused by 28 days of bed rest with energy deficit and amino acid supplementation in healthy men. Int J Med Sci 11(12):1248-1257, 2014
Brooks NE, Myburgh KH Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways. Front Physiol 5:99, 2014
Piasecki M, Ireland A, Piasecki J, Stashuk DW, McPhee JS and Jones DA. The reliability of methods to estimate the number and size of human motor units and their use with large limb muscles. European Journal of Applied Physiology 118: 767–775, 2018.
Macgregor LJ, Hunter AM, Orizio C, Fairweather MM, Ditroilo M. Assessment of skeletal muscle contractile properties by radial displacement: the case for tensiomyography. Sports Medicine. 1-14, 2018
Macgregor LJ and Hunter AM. High-threshold motor unit firing reflects force recovery following a bout of damaging eccentric exercise. PLOS One 3(4), 2018

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Stirling, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Molecular mechanisms of stem cell function in skeletal muscle ageing
University of Sheffield
Impact of physical activity on the trajectory of neuromuscular ageing in humans
University of Padua
Can a nutraceutical formulation targeted at the autophagy-lysosomal system improve recovery/regeneration and exercise adaptations in skeletal muscle?
Manchester Metropolitan University