Looking to list your PhD opportunities? Log in here.
About the Project
The regulation of gene expression and function operates at multiple levels. Metabolic pathways in the cell generate metabolites that directly affect DNA, RNA and proteins, regulating the expression and function of many genes, often feeding back on the very enzymes that catalysed their synthesis. The precursors of these key regulatory metabolites, or the key metabolites themselves, are usually obtained from the diet. Thus, in our body there is an intimate integration between our diet, our physiology and behaviour, and yet, how this integration operates remains obscure in many ways. What is clear is that, when the link between essential nutrients and gene expression is disrupted, pathologies including cardiovascular diseases, diabetes, cancer and neurological problems arise.
This project is seeking to define how the essential amino acid methionine and vitamin B9 regulate our physiology and behaviour. These two nutrients can regulate gene expression and function by acting on DNA and proteins by a mechanism known as methylation, i.e. the addition of a methyl group to specific nucleotides or amino acids. Methylated nucleotides can also be found on RNAs, but whether and how this methylation can be regulated, and whether it is affected by our diet is unknown. Our previous investigations have revealed that methyl metabolism, and especially mRNA methylation, is critical for biological rhythms in organisms throughout evolution, from bacteria to humans. The project will use these discoveries as a starting point to investigate the physiological function of RNA methylation, how it is regulated by our diet, and what pathologies arise when it is disrupted.
Eligibility
Applicants must have obtained or be about to obtain a First or Upper Second class UK honours degree, or the equivalent qualifications gained outside the UK, in a relevant discipline.
Before you Apply
Applicants must make direct contact with preferred supervisors before applying. It is your responsibility to make arrangements to meet with potential supervisors, prior to submitting a formal online application.
How to Apply
For information on how to apply for this project, please visit the Faculty of Biology, Medicine and Health Doctoral Academy website (https://www.bmh.manchester.ac.uk/study/research/apply/). Informal enquiries may be made directly to the primary supervisor. On the online application form select the appropriate subject title.
For international students, we also offer a unique 4 year PhD programme that gives you the opportunity to undertake an accredited Teaching Certificate whilst carrying out an independent research project across a range of biological, medical and health sciences.
Your application form must be accompanied by a number of supporting documents by the advertised deadlines. Without all the required documents submitted at the time of application, your application will not be processed and we cannot accept responsibility for late or missed deadlines. Incomplete applications will not be considered. If you have any queries regarding making an application please contact our admissions team admissions.doctoralacademy@manchester.ac.uk
Equality, Diversity and Inclusion
Equality, diversity and inclusion is fundamental to the success of The University of Manchester, and is at the heart of all of our activities. The full Equality, diversity and inclusion statement can be found on the website https://www.bmh.manchester.ac.uk/study/research/apply/equality-diversity-inclusion/
For international students we also offer a unique 4 year PhD programme that gives you the opportunity to undertake an accredited Teaching Certificate whilst carrying out an independent research project across a range of biological, medical and health sciences. For more information please visit http://www.internationalphd.manchester.ac.uk
Funding Notes
As an equal opportunities institution we welcome applicants from all sections of the community regardless of gender, ethnicity, disability, sexual orientation and transgender status. All appointments are made on merit.
References
2. Fustin, J-M, Kojima, R, Itoh, K, Chang, H-Y, Ye, S, Zhuang, B, Oji, A, Gibo, S, Narasimamurthy, R, Virshup, D, Kurosawa, G, Doi, M, Manabe, I, Ishihama, Y, Ikawa, M & Okamura, H. Two Ck1δ transcripts regulated by m6A meth-ylation code for two antagonistic kinases in the control of the circadian clock. Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):5980-5985. doi: 10.1073/pnas.1809838115
3. Fustin JM, Ye S, Rakers C, Kaneko K, Fukumoto K, Yamano M, Versteven M, Grünewald E, Cargill SJ, Tamai TK, Xu Y, Jabbur ML, Kojima R, Lamberti ML, Yoshioka-Kobayashi K, Whitmore D, Tammam S, Howell PL, Kageyama R, Matsuo T, Stanewsky R, Golombek DA, Johnson CH, Kakeya H, van Ooijen G, Okamura H. Methylation deficiency disrupts biological rhythms from bacteria to humans. Commun Biol. 2020 May 6;3(1):211. doi: 10.1038/s42003-020-0942-0.
Email Now
Why not add a message here
The information you submit to The University of Manchester will only be used by them or their data partners to deal with your enquiry, according to their privacy notice. For more information on how we use and store your data, please read our privacy statement.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Search suggestions
Based on your current searches we recommend the following search filters.
Check out our other PhDs in Manchester, United Kingdom
Check out our other PhDs in United Kingdom
Start a New search with our database of over 4,000 PhDs

PhD suggestions
Based on your current search criteria we thought you might be interested in these.
Role of the ribosomal exit tunnel in translation regulation
The University of Manchester
Biological role of Stress Hormones
University of Reading
The role and regulation of microtubules during axon growth and degeneration
The University of Manchester